Abstract

Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Manufacturing-constrained optical design methodology for cylindrical freeform reflective imaging system

Xin Zheng, Zexiao Li, Xiaodong Zhang, and Fengzhou Fang
Opt. Express 26(17) 22547-22562 (2018)

Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror

Qingyu Meng, Hongyuan Wang, Kejun Wang, Yan Wang, Zhenhua Ji, and Dong Wang
Appl. Opt. 55(32) 8962-8970 (2016)

Design method of freeform off-axis reflective imaging systems with a direct construction process

Tong Yang, Jun Zhu, Wei Hou, and Guofan Jin
Opt. Express 22(8) 9193-9205 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. P. Thompson, T. Schmid, and J. P. Rolland, “The misalignment induced aberrations of TMA telescopes,” Opt. Express 16(25), 20345–20353 (2008).
    [Crossref] [PubMed]
  2. J. W. Figoski, T. E. Shrode, and G. F. Moore, “Computer-aided alignment of a wide-field, three-mirror, unobscured, high-resolution sensor,” International Soc. Opt. Photonics 1049, 166–178 (1989).
  3. F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).
  4. V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
    [Crossref]
  5. J. H. Burge, R. Zehnder, and C. Zhao, “Optical alignment with computer-generated holograms,” Proc. SPIE 6676, 66760C (2007).
    [Crossref]
  6. P. Shore, P. Morantz, D. Lee, and P. A. McKeown, “Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope,” Cirp. Ann-Manuf. Technol. 55(1), 543–546 (2006).
  7. Z. Gu, C. Yan, and Y. Wang, “Alignment of a three-mirror anastigmatic telescope using nodal aberration theory,” Opt. Express 23(19), 25182–25201 (2015).
    [Crossref] [PubMed]
  8. K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Extending Nodal Aberration Theory to include mount-induced aberrations with application to freeform surfaces,” Opt. Express 20(18), 20139–20155 (2012).
    [Crossref] [PubMed]
  9. K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors,” Opt. Lett. 39(10), 2896–2899 (2014).
    [Crossref] [PubMed]
  10. T. Yang, J. Zhu, W. Hou, and G. Jin, “Design method of freeform off-axis reflective imaging systems with a direct construction process,” Opt. Express 22(8), 9193–9205 (2014).
    [Crossref] [PubMed]
  11. Y. Wang, Z. Li, X. Liu, F. Fang, and X. Zhang, “Freeform-objective Chernin multipass cell: application of a freeform surface on assembly simplification,” Appl. Opt. 56(30), 8541–8546 (2017).
    [Crossref] [PubMed]
  12. X. D. Zhang, H. M. Gao, Y. W. Guo, and G. X. Zhang, “Machining of optical freeform prism by rotating tools turning,” Cirp. Ann-Manuf. Technnol. 61(1), 519–522 (2012).
  13. M. Beier, J. Hartung, T. Peschel, C. Damm, A. Gebhardt, S. Scheiding, D. Stumpf, U. D. Zeitner, S. Risse, R. Eberhardt, and A. Tünnermann, “Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope,” Appl. Opt. 54(12), 3530–3542 (2015).
    [Crossref]
  14. B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
    [Crossref]
  15. Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
    [Crossref]
  16. X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
    [Crossref] [PubMed]
  17. Y. Zhang, H. N. Cheng, R. Wu, and R. Liang, “Data processing for point-based in situ metrology of freeform optical surface,” Opt. Express 25(12), 13414–13424 (2017).
    [Crossref] [PubMed]
  18. L. B. Kong, C. F. Cheung, S. To, and W. B. Lee, “An investigation into surface generation in ultra-precision raster milling,” J. Mater. Process. Technol. 209(8), 4178–4185 (2009).
    [Crossref]
  19. X. L. Liu, X. D. Zhang, F. Fang, and S. Liu, “Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 105, 45–57 (2016).
    [Crossref]
  20. T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
    [Crossref]

2017 (3)

2016 (2)

X. L. Liu, X. D. Zhang, F. Fang, and S. Liu, “Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 105, 45–57 (2016).
[Crossref]

Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (2)

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

2012 (2)

K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Extending Nodal Aberration Theory to include mount-induced aberrations with application to freeform surfaces,” Opt. Express 20(18), 20139–20155 (2012).
[Crossref] [PubMed]

X. D. Zhang, H. M. Gao, Y. W. Guo, and G. X. Zhang, “Machining of optical freeform prism by rotating tools turning,” Cirp. Ann-Manuf. Technnol. 61(1), 519–522 (2012).

2009 (1)

L. B. Kong, C. F. Cheung, S. To, and W. B. Lee, “An investigation into surface generation in ultra-precision raster milling,” J. Mater. Process. Technol. 209(8), 4178–4185 (2009).
[Crossref]

2008 (1)

2007 (1)

J. H. Burge, R. Zehnder, and C. Zhao, “Optical alignment with computer-generated holograms,” Proc. SPIE 6676, 66760C (2007).
[Crossref]

2006 (1)

P. Shore, P. Morantz, D. Lee, and P. A. McKeown, “Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope,” Cirp. Ann-Manuf. Technol. 55(1), 543–546 (2006).

2001 (1)

V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
[Crossref]

1989 (1)

J. W. Figoski, T. E. Shrode, and G. F. Moore, “Computer-aided alignment of a wide-field, three-mirror, unobscured, high-resolution sensor,” International Soc. Opt. Photonics 1049, 166–178 (1989).

Beier, M.

Burge, J. H.

J. H. Burge, R. Zehnder, and C. Zhao, “Optical alignment with computer-generated holograms,” Proc. SPIE 6676, 66760C (2007).
[Crossref]

Cai, H.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

Carbone, V.

V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
[Crossref]

Carocci, M.

V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
[Crossref]

Cheng, H. N.

Cheung, C. F.

L. B. Kong, C. F. Cheung, S. To, and W. B. Lee, “An investigation into surface generation in ultra-precision raster milling,” J. Mater. Process. Technol. 209(8), 4178–4185 (2009).
[Crossref]

Chiffre, L. D.

V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
[Crossref]

Damm, C.

Davis, G. E.

Eberhardt, R.

Evans, C.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

Fang, F.

Fang, F. Z.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

Figoski, J. W.

J. W. Figoski, T. E. Shrode, and G. F. Moore, “Computer-aided alignment of a wide-field, three-mirror, unobscured, high-resolution sensor,” International Soc. Opt. Photonics 1049, 166–178 (1989).

Fuerschbach, K.

Gao, H. M.

X. D. Zhang, H. M. Gao, Y. W. Guo, and G. X. Zhang, “Machining of optical freeform prism by rotating tools turning,” Cirp. Ann-Manuf. Technnol. 61(1), 519–522 (2012).

Gebhardt, A.

Gu, Z.

Guo, Y. W.

X. D. Zhang, H. M. Gao, Y. W. Guo, and G. X. Zhang, “Machining of optical freeform prism by rotating tools turning,” Cirp. Ann-Manuf. Technnol. 61(1), 519–522 (2012).

Hartung, J.

Hou, W.

Jin, G.

Jin, G. F.

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref]

Kong, L. B.

L. B. Kong, C. F. Cheung, S. To, and W. B. Lee, “An investigation into surface generation in ultra-precision raster milling,” J. Mater. Process. Technol. 209(8), 4178–4185 (2009).
[Crossref]

Lee, D.

P. Shore, P. Morantz, D. Lee, and P. A. McKeown, “Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope,” Cirp. Ann-Manuf. Technol. 55(1), 543–546 (2006).

Lee, W. B.

L. B. Kong, C. F. Cheung, S. To, and W. B. Lee, “An investigation into surface generation in ultra-precision raster milling,” J. Mater. Process. Technol. 209(8), 4178–4185 (2009).
[Crossref]

Li, B.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

Li, F.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

Li, Z.

Liang, R.

Liu, H. Q.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

Liu, Q.

Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
[Crossref]

Liu, S.

X. L. Liu, X. D. Zhang, F. Fang, and S. Liu, “Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 105, 45–57 (2016).
[Crossref]

Liu, X.

Liu, X. L.

X. L. Liu, X. D. Zhang, F. Fang, and S. Liu, “Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 105, 45–57 (2016).
[Crossref]

Mao, X. Y.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

McKeown, P. A.

P. Shore, P. Morantz, D. Lee, and P. A. McKeown, “Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope,” Cirp. Ann-Manuf. Technol. 55(1), 543–546 (2006).

Moore, G. F.

J. W. Figoski, T. E. Shrode, and G. F. Moore, “Computer-aided alignment of a wide-field, three-mirror, unobscured, high-resolution sensor,” International Soc. Opt. Photonics 1049, 166–178 (1989).

Morantz, P.

P. Shore, P. Morantz, D. Lee, and P. A. McKeown, “Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope,” Cirp. Ann-Manuf. Technol. 55(1), 543–546 (2006).

Pan, S. L.

Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
[Crossref]

Peng, F. Y.

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

Peschel, T.

Risse, S.

Rolland, J. P.

Sansoni, G.

V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
[Crossref]

Savio, E.

V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
[Crossref]

Scheiding, S.

Schmid, T.

Shore, P.

P. Shore, P. Morantz, D. Lee, and P. A. McKeown, “Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope,” Cirp. Ann-Manuf. Technol. 55(1), 543–546 (2006).

Shrode, T. E.

J. W. Figoski, T. E. Shrode, and G. F. Moore, “Computer-aided alignment of a wide-field, three-mirror, unobscured, high-resolution sensor,” International Soc. Opt. Photonics 1049, 166–178 (1989).

Stumpf, D.

Thompson, K. P.

To, S.

L. B. Kong, C. F. Cheung, S. To, and W. B. Lee, “An investigation into surface generation in ultra-precision raster milling,” J. Mater. Process. Technol. 209(8), 4178–4185 (2009).
[Crossref]

Tünnermann, A.

Wang, R. Q.

Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
[Crossref]

Wang, Y.

Weckenmann, A.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

Wu, R.

Yan, C.

Yan, H. L.

Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
[Crossref]

Yang, T.

Zehnder, R.

J. H. Burge, R. Zehnder, and C. Zhao, “Optical alignment with computer-generated holograms,” Proc. SPIE 6676, 66760C (2007).
[Crossref]

Zeitner, U. D.

Zeng, Z.

Zhang, G. X.

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

X. D. Zhang, H. M. Gao, Y. W. Guo, and G. X. Zhang, “Machining of optical freeform prism by rotating tools turning,” Cirp. Ann-Manuf. Technnol. 61(1), 519–522 (2012).

Zhang, X.

Zhang, X. D.

X. L. Liu, X. D. Zhang, F. Fang, and S. Liu, “Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 105, 45–57 (2016).
[Crossref]

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

X. D. Zhang, H. M. Gao, Y. W. Guo, and G. X. Zhang, “Machining of optical freeform prism by rotating tools turning,” Cirp. Ann-Manuf. Technnol. 61(1), 519–522 (2012).

Zhang, Y.

Zhao, C.

J. H. Burge, R. Zehnder, and C. Zhao, “Optical alignment with computer-generated holograms,” Proc. SPIE 6676, 66760C (2007).
[Crossref]

Zhou, X. Q.

Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
[Crossref]

Zhu, J.

Appl. Opt. (2)

Cirp. Ann-manuf. Techn. (1)

F. Z. Fang, X. D. Zhang, A. Weckenmann, G. X. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” Cirp. Ann-manuf. Techn. 62(2), 823–846 (2013).

Cirp. Ann-Manuf. Technnol. (1)

X. D. Zhang, H. M. Gao, Y. W. Guo, and G. X. Zhang, “Machining of optical freeform prism by rotating tools turning,” Cirp. Ann-Manuf. Technnol. 61(1), 519–522 (2012).

Cirp. Ann-Manuf. Technol. (1)

P. Shore, P. Morantz, D. Lee, and P. A. McKeown, “Manufacturing and measurement of the MIRI spectrometer optics for the James Webb space telescope,” Cirp. Ann-Manuf. Technol. 55(1), 543–546 (2006).

Int. J. Adv. Manuf. Technol. (2)

V. Carbone, M. Carocci, E. Savio, G. Sansoni, and L. D. Chiffre, “Combination of a vision system and a coordinate measuring machine for the reverse engineering of freeform surfaces,” Int. J. Adv. Manuf. Technol. 17(4), 263–271 (2001).
[Crossref]

Q. Liu, S. L. Pan, H. L. Yan, X. Q. Zhou, and R. Q. Wang, “In situ measurement and error compensation of optical freeform surfaces based on a two DOF fast tool servo,” Int. J. Adv. Manuf. Technol. 86(1–4), 793–798 (2016).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

X. L. Liu, X. D. Zhang, F. Fang, and S. Liu, “Identification and compensation of main machining errors on surface form accuracy in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 105, 45–57 (2016).
[Crossref]

International Soc. Opt. Photonics (1)

J. W. Figoski, T. E. Shrode, and G. F. Moore, “Computer-aided alignment of a wide-field, three-mirror, unobscured, high-resolution sensor,” International Soc. Opt. Photonics 1049, 166–178 (1989).

J. Mater. Process. Technol. (1)

L. B. Kong, C. F. Cheung, S. To, and W. B. Lee, “An investigation into surface generation in ultra-precision raster milling,” J. Mater. Process. Technol. 209(8), 4178–4185 (2009).
[Crossref]

Light Sci. Appl. (1)

T. Yang, G. F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light Sci. Appl. 6(10), e17081 (2017).
[Crossref]

Meas. Sci. Technol. (1)

B. Li, F. Li, H. Q. Liu, H. Cai, X. Y. Mao, and F. Y. Peng, “A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces,” Meas. Sci. Technol. 25(1), 015204 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Proc. SPIE (1)

J. H. Burge, R. Zehnder, and C. Zhao, “Optical alignment with computer-generated holograms,” Proc. SPIE 6676, 66760C (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Manufacture strategy of MRIS.
Fig. 2
Fig. 2 (a) Alignment-free machining configuration and (b) cutting marks generation for off-axis three-mirror system on ultra-precision turning machine.
Fig. 3
Fig. 3 Rotating radius according to the minimum distance between the corresponding mirrors. (a) TMA and (b) other multi-mirror systems.
Fig. 4
Fig. 4 Weight distribution on the form error caused by machine errors.
Fig. 5
Fig. 5 Optical measurement setup with (a) CCD sensor based on the planar wavefront input from the objective space, (b) wavefront sensor and microscope objective lens or (c) a spherical reference mirror and (d) Optical measurement setup with a reference plane mirror lens based on the spherical wavefront input from image space.
Fig. 6
Fig. 6 (a) Optical path design and optical performance of and (b) wavefront aberration at central field of view.
Fig. 7
Fig. 7 (a) MTF at different field of view and (b) variations MTF along according to different angle errors of three mirrors.
Fig. 8
Fig. 8 Form error of a pre-machine spherical surface: (a) before compensation, (b) after compensation and (c) the identified machine errors.
Fig. 9
Fig. 9 (a) Actual machining setup based on the fly-cutting method and (b) configuration for measuring the optical performance.
Fig. 10
Fig. 10 (a) Surface topography, (b) two dimensional PSD and (c) specification of surface profile in X and Z direction.
Fig. 11
Fig. 11 The measurement results of wavefront aberration in the field of (a) 0°, (b) + 1° and (c) + 2° and (d) Zernike polynomials coefficient of the wavefront aberration.
Fig. 12
Fig. 12 (a) The experimental assembly of infrared imaging system and the captured images in the working distance of (b) 1 m, (c) 10 m and (d) 500 m.

Tables (5)

Tables Icon

Table 1 Coordinate distortion due to machine error items.

Tables Icon

Table 2 Specifications of freeform off-axis TMA.

Tables Icon

Table 3 Zernike coefficients of the wavefront aberration caused by the main machine errors.

Tables Icon

Table 4 Specifications of freeform off-axis three-mirror imaging system.

Tables Icon

Table 5 Key parameters for designing the rotating radius of fly-cutter.

Metrics