Abstract

This paper demonstrates a methodology to miniaturize THz spectroscopes into a single silicon chip by eliminating traditional solid-state architectural components such as complex tunable THz and optical sources, nonlinear mixing and amplifiers. The proposed method achieves this by extracting incident THz spectral signatures from the surface of an on-chip antenna itself. The information is sensed through the spectrally-sensitive 2D distribution of the impressed current surface under the THz incident field. By converting the antenna from a single-port to a massively multi-port architecture with integrated electronics and deep subwavelength sensing, THz spectral estimation is converted into a linear estimation problem. We employ rigorous regression techniques and analysis to demonstrate a single silicon chip system operating at room temperature across 0.04–0.99 THz with 10 MHz accuracy in spectrum estimation of THz tones across the entire spectrum.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Toward real-time terahertz imaging

Hichem Guerboukha, Kathirvel Nallappan, and Maksim Skorobogatiy
Adv. Opt. Photon. 10(4) 843-938 (2018)

Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution

Zeyu Li, Qiang Yan, Yu Qin, Weipeng Kong, Guangbin Li, Mingrui Zou, Du Wang, Zhisheng You, and Xun Zhou
Opt. Express 27(2) 702-713 (2019)

Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature

Jonathan Oden, Jérome Meilhan, Jérémy Lalanne-Dera, Jean-François Roux, Frédéric Garet, Jean-Louis Coutaz, and François Simoens
Opt. Express 21(4) 4817-4825 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nature Photonics 3(11), 630–632 (2009).
    [Crossref]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  4. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2002).
    [Crossref]
  5. B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1(9), 517–525 (2007).
    [Crossref]
  6. B. S. Williams, “Monolithically integrated solid-state terahertz transceivers,” Nature Photonics 1(9), 565–569 (2007).
  7. M. Lee, M. C. Wanke, M. Lerttamrab, and E. W. Young, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron. 14(2), 370–373 (2008).
    [Crossref]
  8. A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
    [Crossref]
  9. M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
    [Crossref]
  10. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  11. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
    [Crossref] [PubMed]
  12. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
    [Crossref]
  13. O. Momeni and E. Afshari, “High power terahertz and millimeter-wave oscillator design: A systematic approach,” IEEE J. Solid-State Circuits 46(3), 583–597 (2011).
    [Crossref]
  14. U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
    [Crossref]
  15. Wu Xue and K. Sengupta, “A 40-to-330GHz synthesizer-free THz spectroscope-on-chip exploiting electromagnetic scattering,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 428–429 (2016).
  16. X. Wu and K. Sengupta, “On-chip THz spectroscope exploiting electromagnetic scattering with multiport antenna,” IEEE J. Solid-States Circuits 51(12), 3049–3062 (2016).
    [Crossref]
  17. X. Wu and K. Sengupta, “Dynamic waveform shaping with picosecond time-widths,” IEEE J. Solid-States Circuits 52(2), 389–405 (2017).
    [Crossref]
  18. K. Sengupta and A. Hajimiri, “A 0.28 THz Power-generation and Beam-steering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits 47(12), 3013–3031 (2012).
    [Crossref]
  19. R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
    [Crossref]
  20. K. Sengupta, D. Seo, L. Yang, and A. Hajimiri, “Silicon Integrated 280 GHz Imaging Chipset With 4X4 SiGe Receiver Array and CMOS Source,” IEEE Trans. THz Sci. and Tech. 5(3), 427–437 (2015).
    [Crossref]
  21. M. Uzunkol, O. D. Gurbuz, F. Golcuk, and G. M. Rebeiz, “A 0.32 THz SiGe 4×4 imaging array using high efficiency on-chip antennas,” IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013).
    [Crossref]
  22. R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
    [Crossref]
  23. Q. Zhong, W. Choi, C. Miller, R. Henderson, and K. K. O, “A 210-to-305GHz CMOS Receiver for Rotational Spectroscopy,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 426–427 (2016).
  24. C. Wang and R. Han, “Dual-Terahertz-Comb Spectrometer on CMOS for Rapid, Wide-Range Gas Detection With Absolute Specificity,” IEEE J. Solid-State Circuits 52(12), 3361–3372 (2017).
    [Crossref]
  25. G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least squares,” SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999).
    [Crossref]
  26. S. Oymak, C. Thrampoulidis, and B. Hassibi, “The squared-error of generalized LASSO: A precise analysis,” Annual Allerton Conference on Communication”, Control, and Computing, pp. 1002–1009 (2013).
  27. R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” J. Roy. Statistical Society: Series B,  73, 273–282 (2011).
    [Crossref]
  28. G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80(11), 1748–1770 (1992).
    [Crossref]
  29. K. Sengupta and A. Hajimiri, “Designing Optimal Surface Currents for Efficient On-Chip mm-Wave Radiators With Active Circuitry,” IEEE Trans. Microw. Theory and Techn. 64(7), 1976–1988 (2016).
    [Crossref]
  30. L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (IEEE, 2017), pp. 462–463.
  31. L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” in” IEEE Trans. Biomedical Circuits Sys. 11(6), 1176–1191 (2017).
    [Crossref]

2017 (3)

X. Wu and K. Sengupta, “Dynamic waveform shaping with picosecond time-widths,” IEEE J. Solid-States Circuits 52(2), 389–405 (2017).
[Crossref]

C. Wang and R. Han, “Dual-Terahertz-Comb Spectrometer on CMOS for Rapid, Wide-Range Gas Detection With Absolute Specificity,” IEEE J. Solid-State Circuits 52(12), 3361–3372 (2017).
[Crossref]

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” in” IEEE Trans. Biomedical Circuits Sys. 11(6), 1176–1191 (2017).
[Crossref]

2016 (2)

K. Sengupta and A. Hajimiri, “Designing Optimal Surface Currents for Efficient On-Chip mm-Wave Radiators With Active Circuitry,” IEEE Trans. Microw. Theory and Techn. 64(7), 1976–1988 (2016).
[Crossref]

X. Wu and K. Sengupta, “On-chip THz spectroscope exploiting electromagnetic scattering with multiport antenna,” IEEE J. Solid-States Circuits 51(12), 3049–3062 (2016).
[Crossref]

2015 (1)

K. Sengupta, D. Seo, L. Yang, and A. Hajimiri, “Silicon Integrated 280 GHz Imaging Chipset With 4X4 SiGe Receiver Array and CMOS Source,” IEEE Trans. THz Sci. and Tech. 5(3), 427–437 (2015).
[Crossref]

2014 (1)

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

2013 (2)

M. Uzunkol, O. D. Gurbuz, F. Golcuk, and G. M. Rebeiz, “A 0.32 THz SiGe 4×4 imaging array using high efficiency on-chip antennas,” IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013).
[Crossref]

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

2012 (3)

K. Sengupta and A. Hajimiri, “A 0.28 THz Power-generation and Beam-steering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits 47(12), 3013–3031 (2012).
[Crossref]

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

2011 (4)

A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

O. Momeni and E. Afshari, “High power terahertz and millimeter-wave oscillator design: A systematic approach,” IEEE J. Solid-State Circuits 46(3), 583–597 (2011).
[Crossref]

R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” J. Roy. Statistical Society: Series B,  73, 273–282 (2011).
[Crossref]

2009 (1)

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nature Photonics 3(11), 630–632 (2009).
[Crossref]

2008 (1)

M. Lee, M. C. Wanke, M. Lerttamrab, and E. W. Young, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron. 14(2), 370–373 (2008).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1(2), 97–105 (2007).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1(9), 517–525 (2007).
[Crossref]

B. S. Williams, “Monolithically integrated solid-state terahertz transceivers,” Nature Photonics 1(9), 565–569 (2007).

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2002 (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2002).
[Crossref]

1999 (1)

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least squares,” SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999).
[Crossref]

1992 (1)

G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80(11), 1748–1770 (1992).
[Crossref]

Afshari, E.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

O. Momeni and E. Afshari, “High power terahertz and millimeter-wave oscillator design: A systematic approach,” IEEE J. Solid-State Circuits 46(3), 583–597 (2011).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Beltram, F.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Bevilacqua, S.

A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
[Crossref]

Cathelin, A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Cherednichenko, S.

A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
[Crossref]

Choi, W.

Q. Zhong, W. Choi, C. Miller, R. Henderson, and K. K. O, “A 210-to-305GHz CMOS Receiver for Rotational Spectroscopy,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 426–427 (2016).

Döhler, G. H.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

Drakinskiy, V.

A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
[Crossref]

Duling, I.

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nature Photonics 3(11), 630–632 (2009).
[Crossref]

Ercolani, D.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Faist, J.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Forster, W.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

Förster, W.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Golcuk, F.

M. Uzunkol, O. D. Gurbuz, F. Golcuk, and G. M. Rebeiz, “A 0.32 THz SiGe 4×4 imaging array using high efficiency on-chip antennas,” IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013).
[Crossref]

Golub, G. H.

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least squares,” SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999).
[Crossref]

Gossard, A. C.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Grzyb, J.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Gurbuz, O. D.

M. Uzunkol, O. D. Gurbuz, F. Golcuk, and G. M. Rebeiz, “A 0.32 THz SiGe 4×4 imaging array using high efficiency on-chip antennas,” IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013).
[Crossref]

Hadi, R. A.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Hajimiri, A.

K. Sengupta and A. Hajimiri, “Designing Optimal Surface Currents for Efficient On-Chip mm-Wave Radiators With Active Circuitry,” IEEE Trans. Microw. Theory and Techn. 64(7), 1976–1988 (2016).
[Crossref]

K. Sengupta, D. Seo, L. Yang, and A. Hajimiri, “Silicon Integrated 280 GHz Imaging Chipset With 4X4 SiGe Receiver Array and CMOS Source,” IEEE Trans. THz Sci. and Tech. 5(3), 427–437 (2015).
[Crossref]

K. Sengupta and A. Hajimiri, “A 0.28 THz Power-generation and Beam-steering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits 47(12), 3013–3031 (2012).
[Crossref]

Hammar, A.

A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
[Crossref]

Han, R.

C. Wang and R. Han, “Dual-Terahertz-Comb Spectrometer on CMOS for Rapid, Wide-Range Gas Detection With Absolute Specificity,” IEEE J. Solid-State Circuits 52(12), 3361–3372 (2017).
[Crossref]

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

Hansen, P. C.

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least squares,” SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999).
[Crossref]

Hassibi, B.

S. Oymak, C. Thrampoulidis, and B. Hassibi, “The squared-error of generalized LASSO: A precise analysis,” Annual Allerton Conference on Communication”, Control, and Computing, pp. 1002–1009 (2013).

Heinemann, B.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

Henderson, R.

Q. Zhong, W. Choi, C. Miller, R. Henderson, and K. K. O, “A 210-to-305GHz CMOS Receiver for Rotational Spectroscopy,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 426–427 (2016).

Hong, L.

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” in” IEEE Trans. Biomedical Circuits Sys. 11(6), 1176–1191 (2017).
[Crossref]

L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (IEEE, 2017), pp. 462–463.

Kaiser, A.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Keller, H. M.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Kim, D. Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

Kim, Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

Lee, M.

M. Lee, M. C. Wanke, M. Lerttamrab, and E. W. Young, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron. 14(2), 370–373 (2008).
[Crossref]

Lerttamrab, M.

M. Lee, M. C. Wanke, M. Lerttamrab, and E. W. Young, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron. 14(2), 370–373 (2008).
[Crossref]

Malzer, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Miller, C.

Q. Zhong, W. Choi, C. Miller, R. Henderson, and K. K. O, “A 210-to-305GHz CMOS Receiver for Rotational Spectroscopy,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 426–427 (2016).

Momeni, O.

O. Momeni and E. Afshari, “High power terahertz and millimeter-wave oscillator design: A systematic approach,” IEEE J. Solid-State Circuits 46(3), 583–597 (2011).
[Crossref]

O’Leary, D. P.

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least squares,” SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999).
[Crossref]

Oymak, S.

S. Oymak, C. Thrampoulidis, and B. Hassibi, “The squared-error of generalized LASSO: A precise analysis,” Annual Allerton Conference on Communication”, Control, and Computing, pp. 1002–1009 (2013).

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Pfeiffer, U. R.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Preu, S.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

Rebeiz, G. M.

M. Uzunkol, O. D. Gurbuz, F. Golcuk, and G. M. Rebeiz, “A 0.32 THz SiGe 4×4 imaging array using high efficiency on-chip antennas,” IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013).
[Crossref]

G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80(11), 1748–1770 (1992).
[Crossref]

Romeo, L.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Rucker, H.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

Sarmah, N.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

Scalari, G.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Sengupta, K.

X. Wu and K. Sengupta, “Dynamic waveform shaping with picosecond time-widths,” IEEE J. Solid-States Circuits 52(2), 389–405 (2017).
[Crossref]

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” in” IEEE Trans. Biomedical Circuits Sys. 11(6), 1176–1191 (2017).
[Crossref]

K. Sengupta and A. Hajimiri, “Designing Optimal Surface Currents for Efficient On-Chip mm-Wave Radiators With Active Circuitry,” IEEE Trans. Microw. Theory and Techn. 64(7), 1976–1988 (2016).
[Crossref]

X. Wu and K. Sengupta, “On-chip THz spectroscope exploiting electromagnetic scattering with multiport antenna,” IEEE J. Solid-States Circuits 51(12), 3049–3062 (2016).
[Crossref]

K. Sengupta, D. Seo, L. Yang, and A. Hajimiri, “Silicon Integrated 280 GHz Imaging Chipset With 4X4 SiGe Receiver Array and CMOS Source,” IEEE Trans. THz Sci. and Tech. 5(3), 427–437 (2015).
[Crossref]

K. Sengupta and A. Hajimiri, “A 0.28 THz Power-generation and Beam-steering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits 47(12), 3013–3031 (2012).
[Crossref]

Wu Xue and K. Sengupta, “A 40-to-330GHz synthesizer-free THz spectroscope-on-chip exploiting electromagnetic scattering,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 428–429 (2016).

L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (IEEE, 2017), pp. 462–463.

Seo, D.

K. Sengupta, D. Seo, L. Yang, and A. Hajimiri, “Silicon Integrated 280 GHz Imaging Chipset With 4X4 SiGe Receiver Array and CMOS Source,” IEEE Trans. THz Sci. and Tech. 5(3), 427–437 (2015).
[Crossref]

Sherry, H.

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Shichijo, H.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2002).
[Crossref]

Sorba, L.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Stake, J.

A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
[Crossref]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Thrampoulidis, C.

S. Oymak, C. Thrampoulidis, and B. Hassibi, “The squared-error of generalized LASSO: A precise analysis,” Annual Allerton Conference on Communication”, Control, and Computing, pp. 1002–1009 (2013).

Tibshirani, R.

R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” J. Roy. Statistical Society: Series B,  73, 273–282 (2011).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Uzunkol, M.

M. Uzunkol, O. D. Gurbuz, F. Golcuk, and G. M. Rebeiz, “A 0.32 THz SiGe 4×4 imaging array using high efficiency on-chip antennas,” IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013).
[Crossref]

Viti, L.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Vitiello, M. S.

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

Wang, C.

C. Wang and R. Han, “Dual-Terahertz-Comb Spectrometer on CMOS for Rapid, Wide-Range Gas Detection With Absolute Specificity,” IEEE J. Solid-State Circuits 52(12), 3361–3372 (2017).
[Crossref]

Wang, L. J.

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

Wanke, M. C.

M. Lee, M. C. Wanke, M. Lerttamrab, and E. W. Young, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron. 14(2), 370–373 (2008).
[Crossref]

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1(9), 517–525 (2007).
[Crossref]

B. S. Williams, “Monolithically integrated solid-state terahertz transceivers,” Nature Photonics 1(9), 565–569 (2007).

Wu, X.

X. Wu and K. Sengupta, “Dynamic waveform shaping with picosecond time-widths,” IEEE J. Solid-States Circuits 52(2), 389–405 (2017).
[Crossref]

X. Wu and K. Sengupta, “On-chip THz spectroscope exploiting electromagnetic scattering with multiport antenna,” IEEE J. Solid-States Circuits 51(12), 3049–3062 (2016).
[Crossref]

Xue, Wu

Wu Xue and K. Sengupta, “A 40-to-330GHz synthesizer-free THz spectroscope-on-chip exploiting electromagnetic scattering,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 428–429 (2016).

Yang, L.

K. Sengupta, D. Seo, L. Yang, and A. Hajimiri, “Silicon Integrated 280 GHz Imaging Chipset With 4X4 SiGe Receiver Array and CMOS Source,” IEEE Trans. THz Sci. and Tech. 5(3), 427–437 (2015).
[Crossref]

Young, E. W.

M. Lee, M. C. Wanke, M. Lerttamrab, and E. W. Young, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron. 14(2), 370–373 (2008).
[Crossref]

Zhang, Y.

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

Zhao, Y.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

Zhong, Q.

Q. Zhong, W. Choi, C. Miller, R. Henderson, and K. K. O, “A 210-to-305GHz CMOS Receiver for Rotational Spectroscopy,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 426–427 (2016).

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Zimdars, D.

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nature Photonics 3(11), 630–632 (2009).
[Crossref]

Appl. Phys. Lett. (1)

M. S. Vitiello, L. Viti, L. Romeo, D. Ercolani, G. Scalari, J. Faist, F. Beltram, L. Sorba, and A. Tredicucci, “Semiconductor nanowires for highly sensitive, room-temperature detection of terahertz quantum cascade laser emission,” Appl. Phys. Lett. 100(24), 241101 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Lee, M. C. Wanke, M. Lerttamrab, and E. W. Young, “Heterodyne mixing of terahertz quantum cascade lasers using a planar Schottky diode,” IEEE J. Sel. Top. Quantum Electron. 14(2), 370–373 (2008).
[Crossref]

IEEE J. Solid-State Circuits (7)

O. Momeni and E. Afshari, “High power terahertz and millimeter-wave oscillator design: A systematic approach,” IEEE J. Solid-State Circuits 46(3), 583–597 (2011).
[Crossref]

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. A. Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, “A 0.53 THz Reconfigurable Source Module With Up to 1 mW Radiated Power for Diffuse Illumination in Terahertz Imaging Applications,” IEEE J. Solid-State Circuits 49(12), 2938–2950 (2014).
[Crossref]

K. Sengupta and A. Hajimiri, “A 0.28 THz Power-generation and Beam-steering array in CMOS based on distributed active radiators,” IEEE J. Solid-State Circuits 47(12), 3013–3031 (2012).
[Crossref]

R. A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H. M. Keller, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS,” IEEE J. Solid-State Circuits 47(12), 2999–3011 (2012).
[Crossref]

M. Uzunkol, O. D. Gurbuz, F. Golcuk, and G. M. Rebeiz, “A 0.32 THz SiGe 4×4 imaging array using high efficiency on-chip antennas,” IEEE J. Solid-State Circuits 48(9), 2056–2066 (2013).
[Crossref]

R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari, and K. K. O, “Active terahertz imaging using Schottky diodes in CMOS: Array and 860-GHz pixel,” IEEE J. Solid-State Circuits 48(10), 2296–2308 (2013).
[Crossref]

C. Wang and R. Han, “Dual-Terahertz-Comb Spectrometer on CMOS for Rapid, Wide-Range Gas Detection With Absolute Specificity,” IEEE J. Solid-State Circuits 52(12), 3361–3372 (2017).
[Crossref]

IEEE J. Solid-States Circuits (2)

X. Wu and K. Sengupta, “On-chip THz spectroscope exploiting electromagnetic scattering with multiport antenna,” IEEE J. Solid-States Circuits 51(12), 3049–3062 (2016).
[Crossref]

X. Wu and K. Sengupta, “Dynamic waveform shaping with picosecond time-widths,” IEEE J. Solid-States Circuits 52(2), 389–405 (2017).
[Crossref]

IEEE Trans. Biomedical Circuits Sys. (1)

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” in” IEEE Trans. Biomedical Circuits Sys. 11(6), 1176–1191 (2017).
[Crossref]

IEEE Trans. Microw. Theory and Techn. (1)

K. Sengupta and A. Hajimiri, “Designing Optimal Surface Currents for Efficient On-Chip mm-Wave Radiators With Active Circuitry,” IEEE Trans. Microw. Theory and Techn. 64(7), 1976–1988 (2016).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2002).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1(2), 390–394 (2011).
[Crossref]

IEEE Trans. THz Sci. and Tech. (1)

K. Sengupta, D. Seo, L. Yang, and A. Hajimiri, “Silicon Integrated 280 GHz Imaging Chipset With 4X4 SiGe Receiver Array and CMOS Source,” IEEE Trans. THz Sci. and Tech. 5(3), 427–437 (2015).
[Crossref]

J. Appl. Phys. (1)

S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

J. Roy. Statistical Society: Series B (1)

R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” J. Roy. Statistical Society: Series B,  73, 273–282 (2011).
[Crossref]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterials devices,” Nature 444, 597–600 (2006).
[Crossref] [PubMed]

Nature Photonics (4)

M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photonics 1(2), 97–105 (2007).
[Crossref]

I. Duling and D. Zimdars, “Terahertz imaging: Revealing hidden defects,” Nature Photonics 3(11), 630–632 (2009).
[Crossref]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nature Photonics 1(9), 517–525 (2007).
[Crossref]

B. S. Williams, “Monolithically integrated solid-state terahertz transceivers,” Nature Photonics 1(9), 565–569 (2007).

Proc. IEEE (1)

G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,” Proc. IEEE 80(11), 1748–1770 (1992).
[Crossref]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

SIAM J. Matrix Anal. Appl. (1)

G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least squares,” SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999).
[Crossref]

Other (4)

S. Oymak, C. Thrampoulidis, and B. Hassibi, “The squared-error of generalized LASSO: A precise analysis,” Annual Allerton Conference on Communication”, Control, and Computing, pp. 1002–1009 (2013).

Q. Zhong, W. Choi, C. Miller, R. Henderson, and K. K. O, “A 210-to-305GHz CMOS Receiver for Rotational Spectroscopy,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 426–427 (2016).

L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers (IEEE, 2017), pp. 462–463.

Wu Xue and K. Sengupta, “A 40-to-330GHz synthesizer-free THz spectroscope-on-chip exploiting electromagnetic scattering,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 428–429 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Proposed concept of exploiting subwavelength near-field sensing for spectral estimation of incident signal. Three examples of current distribution excited by continuous waves at three different frequencies with incident power of 1.33 nW.
Fig. 2
Fig. 2 Structure of the on-chip antenna, distributed sensors and the architecture of the THz spectroscope. Included is the die photo of the chip.
Fig. 3
Fig. 3 Measured electromagnetic responsivity matrix (Rfrep) from 40–990 GHz with frep=1 GHz.
Fig. 4
Fig. 4 (a) Examples of spectral estimation for single frequency excitations with least squares, LASSO and non-negative least squares regressions. (b) Procedure to successively narrow the spectral resolution down to 10 MHz for single tone excitations.
Fig. 5
Fig. 5 Estimation results for multi-tone and wideband signal excitations.
Fig. 6
Fig. 6 (a) Measured noise floor (σ(ENF)) of the estimation with least squares regression for 1 GHz resolution across 0.04–0.99 THz (b) Optimization of λopt for lowest spectral error (Δavg) for an excitation at 650 GHz for various incidence power levels. The figure also shows the comparison of spectral estimation with least-squares and LASSO with optimized regularizer. (c)–(e) Estimation quality of single tone excitations across 0.04–0.99 THz with the three regression methods. At low incidence power, LASSO and non-negative estimators can push down sensitivities to nearly −40 to −50 dBm across the spectrum, nearly 10–15 dB below the spectral noise floor achieved with least-square estimators.
Fig. 7
Fig. 7 Iterative procedure combining Tikhonov regularizer and non-negative estimator to increase the probability of a successful estimation. This begins with the broadest spectral analysis range to search for the region of ‘spectral activity’ and progressively narrowing it down to a single frequency search which is then estimated with a non-negative estimator. The figure shows successful estimation of a single tone excitation with only 20 nW of incidence power at 650 GHz (~ 15 dB below spectrum noise floor in least-squares)
Fig. 8
Fig. 8 Histogram of estimated spectrum by the chip when excited at 650 GHz with various incidence power levels. The figure shows that above 20 nW, the probability distribution of spectral activity at 650 GHz starts separating from the rest and can be iteratively processed to more accurate predictions of frequency and power.
Fig. 9
Fig. 9 Probability of successful estimation for different incident power levels across 40–990 GHz using least squares, Tikhonov and non-negative estimators. The regression methods allow us to increase the success rate by reducing the spectral noise floor.
Fig. 10
Fig. 10 Estimation Quality (EstQ) of spectral estimation using least squares, LASSO and non-negative estimators across 40–990 GHz, when the chip is excited by a wideband signal with Gaussian spectrum.
Fig. 11
Fig. 11 Examples for estimation of Gaussian Spectra with bandwidth of 50 GHz and center frequencies at 260 GHz and 950 GHz.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S frep = | J s ( X , Y ) | 2 = m = 1 M | J m ( X , Y ) | 2
S frep = R frep E frep + V n
min E est R M × 1 R frep E est S frep 2 E est = ( R frep T R frep ) 1 R frep T S frep
min E est R M × 1 R frep E est S frep 2 + λ 2 f ( E est )
min E est R M × 1 R frep E est S frep 2 + λ 2 E est 2
E est = ( R frep T R frep + λ 2 I ) 1 R frep T S frep
min E est 0 ( 1 2 E est T R frep T R frep E est R frep T S frep E est )
σ ( E NF ) = σ ( E est E frep ) = ( R frep T R frep ) 1 R frep T σ ( V n )
Δ LASSO = Δ Inc + E NF Δ Inc = ( ( R frep T R frep + λ 2 I ) 1 R frep T R frep I ) E frep E NF = ( R frep T R frep + λ 2 I ) 1 R frep T V n
Δ a v g = 1 M σ ( Δ LASSO ) 2 = 1 M ( Δ Inc 2 + σ ( E NF ) 2 )
E s t Q = E frep 2 E frep E est 2

Metrics