Abstract

We report the first demonstration of direct modulation of InAs/GaAs quantum dot (QD) lasers grown on on-axis (001) Si substrate. A low threading dislocation density GaAs buffer layer enables us to grow a high quality 5-layered QD active region on on-axis Si substrate. The active layer has p-modulation doped GaAs barrier layers with a hole concentration of 5 × 1017 cm−3to suppress gain saturation. Small-signal measurement on a 3 × 580 μm2 Fabry-Perot laser showed a 3dB bandwidth of 6.5 GHz at a bias current of 116 mA. A 12.5 Gbit/s non-return-to-zero signal modulation was achieved by directly probing the chip. Open eyes with an extinction ration of 3.3dB was observed at room temperature. The bit-error-rate (BER) curve showed no error-floor up to BER of 1 × 10−13. 12 km single-mode fiber transmission experiments using the QD laser on Si showed a low power penalty of 1 dB at 5 Gbit/s. These results demonstrate the potential for QD lasers epitaxially grown on Si to be used as a low-cost light source for optical communication systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

3 April 2018: Typographical corrections were made to the abstract and body text.


OSA Recommended Articles
Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon

Mengya Liao, Siming Chen, Zhixin Liu, Yi Wang, Lalitha Ponnampalam, Zichuan Zhou, Jiang Wu, Mingchu Tang, Samuel Shutts, Zizhuo Liu, Peter M. Smowton, Siyuan Yu, Alwyn Seeds, and Huiyun Liu
Photon. Res. 6(11) 1062-1066 (2018)

Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C

Yuan-Hsuan Jhang, Reio Mochida, Katsuaki Tanabe, Keizo Takemasa, Mitsuru Sugawara, Satoshi Iwamoto, and Yasuhiko Arakawa
Opt. Express 24(16) 18428-18435 (2016)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers

Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Vitaliy G. Dorogan, Mourad Benamara, Yuriy I. Mazur, Gregory J. Salamo, Alwyn Seeds, and Huiyun Liu
Opt. Express 22(10) 11528-11535 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference (OFC), 2011 OSA Technical Digest Series (Optical Society of America, 2011),paper OTuH2.
  2. J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes, E. M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, and F. Tang, “VCSEL-based interconnects for current and future data centers,” J. Lightwave Technol. 33(4), 727–732 (2015).
    [Crossref]
  3. T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “High-speed modulation lasers for 100GbE applications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper OWD1.
    [Crossref]
  4. K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
    [Crossref]
  5. M. Ishida, M. Matsuda, Y. Tanaka, K. Takada, M. Ekawa, T. Yamamoto, T. Kageyama, M. Yamaguchi, K. Nishi, M. Sugawara, and Y. Arakawa, “Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers,” in Lasers and Electro-Optics (CLEO) Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper CM1I.2.
    [Crossref]
  6. S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
    [Crossref]
  7. P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, A. Narasimha, D. Guckenberger, and M. Harrison, “Si photonics based high-speed optical transceivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.1.E.5.
    [Crossref]
  8. T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
    [Crossref]
  9. S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
    [Crossref] [PubMed]
  10. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24(14), 16167–16174 (2016).
    [Crossref] [PubMed]
  11. T. Kita, N. Yamamoto, T. Kawanishi, and H. Yamada, “Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter,” Appl. Phys. Express 8(6), 062701 (2015).
    [Crossref]
  12. T. Morishita, K. Kounoike, S. Fujiwara, Y. Hagi, and Y. Yabuhara, “Crystal growth and wafer processing of indium phosphide 6” substrate,”in Proc. of the 2016 International Conference on Compound Semiconductor Manufacturing Technology(MANTECH’ 2016), Florida, United States (2016), paper 5b.1.
  13. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3(5), B1–B9 (2015).
    [Crossref]
  14. H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1–4), 96–102 (1989).
    [Crossref]
  15. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref] [PubMed]
  16. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  17. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
    [Crossref] [PubMed]
  18. Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
    [Crossref]
  19. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
    [Crossref] [PubMed]
  20. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
    [Crossref]
  21. Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
    [Crossref] [PubMed]
  22. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).
  23. D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
    [Crossref]
  24. R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
    [Crossref]
  25. W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
    [Crossref]
  26. Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C. Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB Laser,” J. Lightwave Technol. 34(11), 2677–2683 (2016).
    [Crossref]
  27. K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
    [Crossref]
  28. B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
    [Crossref]
  29. M. Ishida, Y. Tanaka, K. Takada, T. Yamamoto, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, M. Sugawara, and Y. Arakawa, “Effect of carrier transport on modulation bandwidth of 1.3-µm InAs/GaAs self-assembled quantum-dot lasers,” in Proc. of the22nd IEEE International Semiconductor Laser Conference2012 (ISLC 2012), Kyoto, Japan (2012), paper WD4.
  30. T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
    [Crossref]
  31. T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa,“Large modulation bandwidth (13.1 GHz) of 1.3 µm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week 2016 (CSW’2016), Toyama, Japan(2016), paper MoC3–4.
    [Crossref]
  32. D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
    [Crossref]
  33. J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
    [Crossref]
  34. C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  35. T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20(25–26), 1038–1040 (1984).
    [Crossref]

2017 (6)

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

2016 (7)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24(14), 16167–16174 (2016).
[Crossref] [PubMed]

Y. Matsui, T. Pham, T. Sudo, G. Carey, B. Young, J. Xu, C. Cole, and C. Roxlo, “28-Gbaud PAM4 and 56-Gb/s NRZ performance comparison using 1310-nm Al-BH DFB Laser,” J. Lightwave Technol. 34(11), 2677–2683 (2016).
[Crossref]

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

2015 (3)

2014 (1)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

2013 (1)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

2012 (1)

2006 (1)

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

2004 (2)

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

1992 (1)

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

1989 (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1–4), 96–102 (1989).
[Crossref]

1986 (1)

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[Crossref]

1984 (1)

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20(25–26), 1038–1040 (1984).
[Crossref]

1982 (1)

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Abdollahinia, A.

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Akiyama, T.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Arakawa, Y.

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Arsenijevic, D.

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

Balemarthy, K.

Banyoudeh, S.

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Beausoleil, R. G.

Bimberg, D.

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Bowers, J. E.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3(5), B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[Crossref]

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20(25–26), 1038–1040 (1984).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Callahan, P. G.

Carey, G.

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Cole, C.

Dagens, B.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Davenport, M.

Ebe, H.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Echlin, M. P.

Eisenstein, G.

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Elliott, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Eyal, O.

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Ferlazzo, L.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Fiorentino, M.

Fujisawa, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Fukushima, T.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Gazula, D.

Geels, R. S.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Gnauck, A. H.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[Crossref]

Gossard, A. C.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3(5), B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Graham, L. A.

Guenter, J. K.

Hatori, N.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Hemenway, B. R.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[Crossref]

Henry, C.

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Hu, E. L.

Huang, D.

Huang, X.

Hulme, J.

Ishida, M.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Ishikawa, M.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Ito, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Iwamoto, S.

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Jeong, S. H.

Jhang, Y.-H.

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Johnson, R. H.

Jung, D.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Kageyama, T.

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

Kawanishi, T.

T. Kita, N. Yamamoto, T. Kawanishi, and H. Yamada, “Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter,” Appl. Phys. Express 8(6), 062701 (2015).
[Crossref]

Kennedy, M. J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

King, J.

Kita, T.

T. Kita, N. Yamamoto, T. Kawanishi, and H. Yamada, “Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter,” Appl. Phys. Express 8(6), 062701 (2015).
[Crossref]

Kobayashi, W.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Koch, T. L.

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20(25–26), 1038–1040 (1984).
[Crossref]

Kocot, C.

Kohtoku, M.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Komljenovic, T.

Kovsh, A. R.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Kroemer, H.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1–4), 96–102 (1989).
[Crossref]

Kuntz, M.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Kurahashi, T.

Kurczveil, G.

Kurosaki, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Lammlin, M.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Landry, G. D.

Lau, K. M.

Le Gouezigou, Q.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Ledentsov, N. N.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Lee, M. L.

Lemaître, A.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Li, Q.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, D.

Liu, A. W.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Liu, A. Y.

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

T. Komljenovic, M. Davenport, J. Hulme, A. Y. Liu, C. T. Santis, A. Spott, S. Srinivasan, E. J. Stanton, C. Zhang, and J. E. Bowers, “Heterogeneous silicon photonic integrated circuits,” J. Lightwave Technol. 34(1), 20–35 (2016).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3(5), B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liu, T.-Y.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1–4), 96–102 (1989).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Lyubomirsky, I.

MacInnes, A. N.

Make, D.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Marinelli, C.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Martinez, A.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Matsui, Y.

Merghem, K.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Mochida, R.

Morito, K.

Mukherjee, K.

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Nagarajan, R. L.

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

Nakata, Y.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Norman, J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and J. E. Bowers, “Quantum dot lasers for silicon photonics,” Photon. Res. 3(5), B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Okumura, S.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Otsubo, K.

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Penty, R. V.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Peters, J.

Petroff, P. M.

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1–4), 96–102 (1989).
[Crossref]

Pham, T.

Pollock, T. M.

Provost, J. G.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Ramdane, A.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Reithmaier, J. P.

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Roxlo, C.

Sanjoh, H.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Santis, C. T.

Schnabel, F.

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Seeds, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sekiguchi, S.

Sellin, R. L.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Selvidge, J.

Shang, C.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Shaw, E. M.

Shibata, Y.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

Shubochkin, R.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sichkovskyi, V.

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Silver, M.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Smowton, P.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Spott, A.

Srinivasan, S.

Stanton, E. J.

Sudo, T.

Sugawara, M.

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Tadokoro, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Takemasa, K.

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

Tan, K. T.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Tanabe, K.

Tanaka, S.

Tanaka, Y.

Tang, F.

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Tatum, J. A.

Thedrez, B.

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

Thompson, M. G.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Torres, A.

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Ustinov, V. M.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Vaidya, D.

Vo, Q. H.

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

Wan, Y.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Watanabe, K.

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

White, I. H.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Wilt, D. P.

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[Crossref]

Wonfor, A.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Xu, J.

Yamada, H.

T. Kita, N. Yamamoto, T. Kawanishi, and H. Yamada, “Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter,” Appl. Phys. Express 8(6), 062701 (2015).
[Crossref]

Yamamoto, N.

T. Kita, N. Yamamoto, T. Kawanishi, and H. Yamada, “Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter,” Appl. Phys. Express 8(6), 062701 (2015).
[Crossref]

Yamanaka, T.

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

Yan, M.

Young, B.

Zhang, C.

Zhang, Z.

Y. Wan, J. Norman, Q. Li, M. J. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, K. M. Lau, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

Zhukov, A. E.

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

Appl. Phys. Express (1)

T. Kita, N. Yamamoto, T. Kawanishi, and H. Yamada, “Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter,” Appl. Phys. Express 8(6), 062701 (2015).
[Crossref]

Appl. Phys. Lett. (2)

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Electron. Lett. (1)

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20(25–26), 1038–1040 (1984).
[Crossref]

IEEE J. Quantum Electron. (3)

J. E. Bowers, B. R. Hemenway, A. H. Gnauck, and D. P. Wilt, “High-speed InGaAsP constricted-mesa lasers,” IEEE J. Quantum Electron. 22(6), 833–844 (1986).
[Crossref]

C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

R. L. Nagarajan, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Kohtoku, T. Tadokoro, and H. Sanjoh, “50-Gb/s direct modulation of 1.3-µm InGaAlAs-based DFB laser with ridge waveguide structure,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1500908 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. T. Tan, C. Marinelli, M. G. Thompson, A. Wonfor, M. Silver, R. L. Sellin, R. V. Penty, I. H. White, M. Kuntz, M. Lammlin, N. N. Ledentsov, D. Bimberg, A. E. Zhukov, V. M. Ustinov, and A. R. Kovsh, “High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers,” IEEE Photonics Technol. Lett. 16(5), 1415–1417 (2004).
[Crossref]

B. Dagens, A. Martinez, J. G. Provost, D. Make, Q. Le Gouezigou, L. Ferlazzo, K. Merghem, A. Lemaître, A. Ramdane, and B. Thedrez, “High extinction ratio and high-temperature 2.5-Gb/s floor-free 1.3-µm transmission with a directly modulated quantum dot laser,” IEEE Photonics Technol. Lett. 18(4), 589–591 (2006).
[Crossref]

J. Appl. Phys. (1)

D. Jung, P. G. Callahan, B. Shin, K. Mukherjee, A. C. Gossard, and J. E. Bowers, “Low threading dislocation density GaAs growth on on-axis GaP/Si (001),” J. Appl. Phys. 122(22), 225703 (2017).
[Crossref]

J. Cryst. Growth (1)

H. Kroemer, T.-Y. Liu, and P. M. Petroff, “GaAs on Si and related systems: Problems and prospects,” J. Cryst. Growth 95(1–4), 96–102 (1989).
[Crossref]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

K. Otsubo, N. Hatori, M. Ishida, S. Okumura, T. Akiyama, Y. Nakata, H. Ebe, M. Sugawara, and Y. Arakawa, “Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-µm p-doped quantum-dot lasers without current adjustments,” Jpn. J. Appl. Phys. 43(8B), L1124–L1126 (2004).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

T. Kageyama, K. Watanabe, Q. H. Vo, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “InAs/GaAs quantum dot lasers with GaP strain‐compensation layers grown by molecular beam epitaxy,” Phys. Status Solidi., A Appl. Mater. Sci. 213(4), 958–964 (2016).
[Crossref]

Proc. SPIE (2)

D. Arsenijević and D. Bimberg, “Quantum-dot lasers for 35 Gbit/s pulse-amplitude modulation and 160 Gbit/s differential quadrature phase-shift keying,” Proc. SPIE 9892, 98920S (2016).
[Crossref]

S. Banyoudeh, O. Eyal, A. Abdollahinia, F. Schnabel, V. Sichkovskyi, J. P. Reithmaier, and G. Eisenstein, “High-bandwidth temperature-stable 1.55-μm quantum dot lasers,” Proc. SPIE 10123, 1012306 (2017).
[Crossref]

Other (8)

P. De Dobbelaere, S. Abdalla, S. Gloeckner, M. Mack, G. Masini, A. Mekis, T. Pinguet, S. Sahni, A. Narasimha, D. Guckenberger, and M. Harrison, “Si photonics based high-speed optical transceivers,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest Series (Optical Society of America, 2012), paper We.1.E.5.
[Crossref]

M. Ishida, M. Matsuda, Y. Tanaka, K. Takada, M. Ekawa, T. Yamamoto, T. Kageyama, M. Yamaguchi, K. Nishi, M. Sugawara, and Y. Arakawa, “Temperature-stable 25-Gbps direct-modulation in 1.3-μm InAs/GaAs quantum dot lasers,” in Lasers and Electro-Optics (CLEO) Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper CM1I.2.
[Crossref]

T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano, “High-speed modulation lasers for 100GbE applications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2011), paper OWD1.
[Crossref]

A. Vahdat, H. Liu, X. Zhao, and C. Johnson, “The emerging optical data center,” in Optical Fiber Communication Conference (OFC), 2011 OSA Technical Digest Series (Optical Society of America, 2011),paper OTuH2.

T. Morishita, K. Kounoike, S. Fujiwara, Y. Hagi, and Y. Yabuhara, “Crystal growth and wafer processing of indium phosphide 6” substrate,”in Proc. of the 2016 International Conference on Compound Semiconductor Manufacturing Technology(MANTECH’ 2016), Florida, United States (2016), paper 5b.1.

T. Kageyama, Q. H. Vo, K. Watanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa,“Large modulation bandwidth (13.1 GHz) of 1.3 µm-range quantum dot lasers with high dot density and thin barrier layer,” in Proceedings of the Compound Semiconductor Week 2016 (CSW’2016), Toyama, Japan(2016), paper MoC3–4.
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics (to be published).

M. Ishida, Y. Tanaka, K. Takada, T. Yamamoto, H. Z. Song, Y. Nakata, M. Yamaguchi, K. Nishi, M. Sugawara, and Y. Arakawa, “Effect of carrier transport on modulation bandwidth of 1.3-µm InAs/GaAs self-assembled quantum-dot lasers,” in Proc. of the22nd IEEE International Semiconductor Laser Conference2012 (ISLC 2012), Kyoto, Japan (2012), paper WD4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 A cross-sectional schematic of InAs QD laser epitaxial structure on Si.
Fig. 2
Fig. 2 (a) A cross-sectional scanning electron microscope image of a fabricated QD laser diode. (b) Optical microscope image to show four Fabry-Perot lasers from a cleaved laser bar. (c) Schematic cross-section of a ridge-waveguide QD laser on Si.
Fig. 3
Fig. 3 Continuous wave light-current-voltage curves from a 5.0 × 580 μm2p-doped QD laser on Si at 20 °C.
Fig. 4
Fig. 4 Small-signal modulation responses for the QD laser on Si (5.0 × 580 μm2) biased from 20 to 116 mA. The fitting curves are drawn using Eq. (1).
Fig. 5
Fig. 5 Comparison of small signal modulation response between (a) UID device and (b)p-MD device. These devices have identical device geometry except for doping in the barrier layers.
Fig. 6
Fig. 6 3dB bandwidth f3dBand relaxation oscillation frequency frversus square-root of the bias current above threshold for the p-doped QD laser on Si (5.0 × 580 μm2).
Fig. 7
Fig. 7 Damping rateγ versus squared relaxation oscillation frequency fr2. The maximum 3 dB bandwidth limited by K-factor f3dB, max is 9.5 GHz.
Fig. 8
Fig. 8 Impedance measurement of QD laser on Si. (a) Equivalent circuit model used for the fitting. (b) Measured and fitted curves of reflection S11 characteristics for forward (80 mA) biased condition from 0.14 to 5 GHz.
Fig. 9
Fig. 9 Eye diagrams measured at 7.5, 10 and 12.5 Gbit/s using NRZ signal with PRBS of 231-1 patterns. The modulation voltage swing was 2.0 Vpp. The bias current of the QD laser was 100 mA.
Fig. 10
Fig. 10 10 Gigabit Ethernet mask test with 2027 waveforms.
Fig. 11
Fig. 11 BER versus average received power for 7.5, 10 and 12.5 Gbit/s.
Fig. 12
Fig. 12 12 km SSMF transmission characteristics for 5 Gbit/s. (a) BER versus average received power. The inset shows static lasing spectrum at 100 mA. (b) Eye diagrams for B2B and after 12 km transmission.

Tables (1)

Tables Icon

Table 1 Performance comparison between QD lasers grown on Si and on GaAs substrate. (1.3 μm InAs/GaAs QD active layer with ground-state lasing)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H ( f ) = 1 ( 1 + ( 2 π f τ p ) 2 ) f r 4 ( f r 2 f 2 ) 2 + ( γ f / 2 π ) 2 ,
γ = K f r 2 + γ 0 ,
f 3 dB, max = 2 2 π K .

Metrics