Abstract

A heterostructured cladding solid-core photonic bandgap fiber (HCSC-PBGF) is designed and fabricated which supports strong core mode and cladding mode transmission in a wide bandgap. An in-line Mach-Zehnder interferometer (MZI) curvature sensor is constructed by splicing single mode fibers at both ends of a HCSC-PBGF. Theoretical analysis of this heterostructured cladding design has been implemented, and the simulation results are consistent with experiment results. Benefiting from the heterostructured cladding design, an enhanced curvature sensing sensitivity of 24.3 nm/m−1 in the range of 0-1.75 m−1 and a high quality interference spectrum with 20 dB fringe visibility are achieved. In order to eliminate the interference of longitudinal strain and transverse torsion on the result of the curvature sensing experiment, we measure the longitudinal strain and transverse torsion sensing properties of HCSC-PBGF, and the results show that the impact is negligible. It is obvious that this high-sensitivity and cost-effective all fiber sensor with a compact structure will have a promising application in fiber sensing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-dependent curvature sensor based on an in-fiber Mach-Zehnder interferometer with a difference arithmetic demodulation method

Changyu Shen, Chuan Zhong, Yang You, Jinlei Chu, Xin Zou, Xinyong Dong, Yongxing Jin, Jianfeng Wang, and Huaping Gong
Opt. Express 20(14) 15406-15417 (2012)

Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement

Bing Sun, Yijian Huang, Shen Liu, Chao Wang, Jun He, Changrui Liao, Guolu Yin, Jing Zhao, Yinjie Liu, Jian Tang, Jiangtao Zhou, and Yiping Wang
Opt. Express 23(11) 14596-14602 (2015)

Sensitivity amplification of fiber-optic in-line Mach–Zehnder Interferometer sensors with modified Vernier-effect

Hao Liao, Ping Lu, Xin Fu, Xinyue Jiang, Wenjun Ni, Deming Liu, and Jiangshan Zhang
Opt. Express 25(22) 26898-26909 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Tian, S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
    [Crossref]
  2. Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Opt. Express 21(1), 154–164 (2013).
    [Crossref] [PubMed]
  3. Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
    [Crossref]
  4. M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett. 42(18), 3549–3552 (2017).
    [Crossref] [PubMed]
  5. P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach-Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
    [Crossref] [PubMed]
  6. J. H. Liou and C. P. Yu, “All-fiber Mach-Zehnder interferometer based on two liquid infiltrations in a photonic crystal fiber,” Opt. Express 23(5), 6946–6951 (2015).
    [Crossref] [PubMed]
  7. Y. Xue, Y. S. Yu, R. Yang, C. Wang, C. Chen, J. C. Guo, X. Y. Zhang, C. C. Zhu, and H. B. Sun, “Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper,” Opt. Lett. 38(8), 1209–1211 (2013).
    [Crossref] [PubMed]
  8. T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
    [Crossref] [PubMed]
  9. S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37(5), 863–865 (2012).
    [Crossref] [PubMed]
  10. B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
    [Crossref] [PubMed]
  11. Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
    [Crossref] [PubMed]
  12. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref] [PubMed]
  13. W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
    [Crossref] [PubMed]
  14. C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
    [Crossref] [PubMed]
  15. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]
  16. Z. Tian and S. H. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
    [Crossref]
  17. L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
    [Crossref]
  18. M. Deng, C. Huang, D. Liu, W. Jin, and T. Zhu, “All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer,” Opt. Express 23(16), 20668–20674 (2015).
    [Crossref] [PubMed]
  19. J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
    [Crossref] [PubMed]
  20. X. Li, Y. Zhao, L. Cai, and Q. Wang, “Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer,” IEEE Photonics Technol. Lett. 28(17), 1839–1842 (2016).
    [Crossref]
  21. M. Deng, C. Tang, T. Zhu, and Y. Rao, “Highly sensitive bend senor based on Mach-zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
    [Crossref]
  22. Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Intensity measurement bend sensors based on periodically tapered soft glass fibers,” Opt. Lett. 36(4), 558–560 (2011).
    [Crossref] [PubMed]
  23. D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4380–4382 (2011).
    [Crossref] [PubMed]
  24. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref] [PubMed]
  25. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
    [Crossref] [PubMed]
  26. X. Hu, X. Shen, J. Wu, J. Peng, L. Yang, J. Li, H. Li, and N. Dai, “All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber,” Opt. Express 24(19), 21693–21699 (2016).
    [Crossref] [PubMed]
  27. P. Steinvurzel, C. M. de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006).
    [Crossref] [PubMed]
  28. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]

2017 (2)

2016 (3)

2015 (5)

2014 (1)

2013 (4)

2012 (4)

2011 (4)

2009 (1)

Z. Tian and S. H. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

2008 (2)

Z. Tian, S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

2006 (1)

2003 (1)

Amezcua Correa, R.

Amezcua-Correa, R.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Barnes, J.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Bock, W.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Brambilla, G.

Cai, L.

X. Li, Y. Zhao, L. Cai, and Q. Wang, “Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer,” IEEE Photonics Technol. Lett. 28(17), 1839–1842 (2016).
[Crossref]

Chan, C.

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Chen, C.

Chen, P.

Chen, Q. D.

Chen, X.

Chen, Y.

Chitaree, R.

Dai, N.

de Sterke, C. M.

Deng, M.

Ding, M.

Dong, X.

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Du, C.

Dunn, S. C.

Eggleton, B. J.

Feng, X.

Fraser, J. M.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Gao, S.

Geng, P.

Greig, P.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Guan, B. O.

Guo, J. C.

He, J.

Hu, L.

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Hu, T. Y.

Hu, X.

Huang, C.

Huang, Q.

Huang, Y.

Jin, L.

Jin, W.

Kuhlmey, B. T.

Li, H.

Li, J.

Li, T.

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Li, X.

X. Li, Y. Zhao, L. Cai, and Q. Wang, “Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer,” IEEE Photonics Technol. Lett. 28(17), 1839–1842 (2016).
[Crossref]

Li, Z.

Liao, C.

Liao, C. R.

Liou, J. H.

Litchinitser, N. M.

Liu, D.

Liu, L.

Liu, S.

Liu, Y.

Loock, H. P.

Z. Tian, S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Loock, H.-P.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Lu, Y. Q.

Martinez-Rios, A.

McPhedran, R. C.

Monzon-Hernandez, D.

Oleschuk, R. D.

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Ou, Z.

Peng, J.

Petrovich, M.

Qian, W.

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Qiu, S. J.

Rao, Y.

M. Deng, C. Tang, T. Zhu, and Y. Rao, “Highly sensitive bend senor based on Mach-zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Richardson, D.

Salceda-Delgado, G.

Schülzgen, A.

Shen, X.

Shu, X.

Song, Z.

Steel, M. J.

Steinvurzel, P.

Sugden, K.

Sun, B.

Sun, H. B.

Sun, L. P.

Talataisong, W.

Tan, Y.

Tang, C.

M. Deng, C. Tang, T. Zhu, and Y. Rao, “Highly sensitive bend senor based on Mach-zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Tang, J.

Tian, Z.

Z. Tian and S. H. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Z. Tian, S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Torres-Gomez, I.

Usner, B.

Van Newkirk, A.

Villatoro, J.

Wang, C.

Wang, D. N.

Wang, G.

Wang, J.

Wang, Q.

X. Li, Y. Zhao, L. Cai, and Q. Wang, “Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer,” IEEE Photonics Technol. Lett. 28(17), 1839–1842 (2016).
[Crossref]

Wang, Y.

Wei, H.

White, T. P.

Wong, W.

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Wu, J.

Xu, F.

Xue, X.

Xue, Y.

Yam, S. H.

Z. Tian and S. H. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Z. Tian, S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Yan, P.

Yang, K.

Yang, L.

Yang, R.

Yin, G.

Yu, C. P.

Yu, Y.

Yu, Y. S.

Zhang, S.

Zhang, W.

Zhang, X. Y.

Zhao, J.

Zhao, Y.

M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett. 42(18), 3549–3552 (2017).
[Crossref] [PubMed]

X. Li, Y. Zhao, L. Cai, and Q. Wang, “Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer,” IEEE Photonics Technol. Lett. 28(17), 1839–1842 (2016).
[Crossref]

Zhong, X.

Zhou, J.

Zhu, C. C.

Zhu, T.

Zu, P.

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

Zubia, J.

IEEE Photonics J. (1)

L. Hu, C. Chan, X. Dong, Y. Wang, P. Zu, W. Wong, W. Qian, and T. Li, “Photonic Crystal Fiber Strain Sensor Based on Modified Mach–Zehnder Interferometer,” IEEE Photonics J. 4(1), 114–118 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Li, Y. Zhao, L. Cai, and Q. Wang, “Simultaneous Measurement of RI and Temperature Based on a Composite Interferometer,” IEEE Photonics Technol. Lett. 28(17), 1839–1842 (2016).
[Crossref]

Z. Tian, S. H. Yam, and H. P. Loock, “Single-Mode Fiber Refractive Index Sensor Based on Core-Offset Attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Z. Tian, S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H.-P. Loock, and R. D. Oleschuk, “Refractive Index Sensing with Mach–Zehnder Interferometer Based on Concatenating Two Single-Mode Fiber Tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
[Crossref]

Z. Tian and S. H. Yam, “In-Line Abrupt Taper Optical Fiber Mach–Zehnder Interferometric Strain Sensor,” IEEE Photonics Technol. Lett. 21(3), 161–163 (2009).
[Crossref]

Opt. Commun. (1)

M. Deng, C. Tang, T. Zhu, and Y. Rao, “Highly sensitive bend senor based on Mach-zehnder interferometer using photonic crystal fiber,” Opt. Commun. 284(12), 2849–2853 (2011).
[Crossref]

Opt. Express (9)

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

P. Steinvurzel, C. M. de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006).
[Crossref] [PubMed]

Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Opt. Express 21(1), 154–164 (2013).
[Crossref] [PubMed]

Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

J. H. Liou and C. P. Yu, “All-fiber Mach-Zehnder interferometer based on two liquid infiltrations in a photonic crystal fiber,” Opt. Express 23(5), 6946–6951 (2015).
[Crossref] [PubMed]

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[Crossref] [PubMed]

M. Deng, C. Huang, D. Liu, W. Jin, and T. Zhu, “All fiber magnetic field sensor with Ferrofluid-filled tapered microstructured optical fiber interferometer,” Opt. Express 23(16), 20668–20674 (2015).
[Crossref] [PubMed]

X. Hu, X. Shen, J. Wu, J. Peng, L. Yang, J. Li, H. Li, and N. Dai, “All fiber M-Z interferometer for high temperature sensing based on a hetero-structured cladding solid-core photonic bandgap fiber,” Opt. Express 24(19), 21693–21699 (2016).
[Crossref] [PubMed]

Opt. Lett. (13)

M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett. 42(18), 3549–3552 (2017).
[Crossref] [PubMed]

P. Chen, X. Shu, and K. Sugden, “Ultra-compact all-in-fiber-core Mach-Zehnder interferometer,” Opt. Lett. 42(20), 4059–4062 (2017).
[Crossref] [PubMed]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

W. Talataisong, D. N. Wang, R. Chitaree, C. R. Liao, and C. Wang, “Fiber in-line Mach-Zehnder interferometer based on an inner air-cavity for high-pressure sensing,” Opt. Lett. 40(7), 1220–1222 (2015).
[Crossref] [PubMed]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

C. R. Liao, D. N. Wang, and Y. Wang, “Microfiber in-line Mach-Zehnder interferometer for strain sensing,” Opt. Lett. 38(5), 757–759 (2013).
[Crossref] [PubMed]

Y. Xue, Y. S. Yu, R. Yang, C. Wang, C. Chen, J. C. Guo, X. Y. Zhang, C. C. Zhu, and H. B. Sun, “Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper,” Opt. Lett. 38(8), 1209–1211 (2013).
[Crossref] [PubMed]

Y. Wang, D. Richardson, G. Brambilla, X. Feng, M. Petrovich, M. Ding, and Z. Song, “Intensity measurement bend sensors based on periodically tapered soft glass fibers,” Opt. Lett. 36(4), 558–560 (2011).
[Crossref] [PubMed]

D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4380–4382 (2011).
[Crossref] [PubMed]

R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
[Crossref] [PubMed]

S. J. Qiu, Y. Chen, F. Xu, and Y. Q. Lu, “Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity,” Opt. Lett. 37(5), 863–865 (2012).
[Crossref] [PubMed]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
[Crossref] [PubMed]

T. Y. Hu, Y. Wang, C. R. Liao, and D. N. Wang, “Miniaturized fiber in-line Mach-Zehnder interferometer based on inner air cavity for high-temperature sensing,” Opt. Lett. 37(24), 5082–5084 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structure schematic diagram of the fiber: (a) All-solid photonic bandgap fiber; (b) Heterostructured cladding solid-core photonic bandgap fiber.
Fig. 2
Fig. 2 (a) The intensity profiles of core mode in AS-PBGF; (b) The effective refractive index (violet line) and confinement loss (purple line) of AS-PBGF; (c-d) The intensity profiles of core mode and cladding mode in HCSC-PBGF; (e) The effective refractive index (green for core mode, red for cladding mode) and confinement loss (olive for core mode, orange for cladding mode) of HCSC-PBGF.
Fig. 3
Fig. 3 (a) Cross section of the HCSC-PBGF; (b) Transmission spectrum of 15 cm HCSC-PBGF in the range of 600 - 1650 nm.
Fig. 4
Fig. 4 (a) Interference spectrum of the HCSC-PBGF based MZI with different lengths; (b) Fringe spacing versus the HCSC-PBGF lengths.
Fig. 5
Fig. 5 Spatial frequency spectrum by taking the FFT with the length of HCSC-PBGF is 41.5 cm, 29 cm and 16.5 cm.
Fig. 6
Fig. 6 Schematic diagram of curvature sensing experiment.
Fig. 7
Fig. 7 (a) Response to curvature for the HCSC-PBGF-based MZI; (b) Interference spectra at 0.08 m−1, 0.48 m−1, 0.88 m−1, 1.27 m−1.
Fig. 8
Fig. 8 (a) Response to strain for the HCSC-PBGF-based MZI; (b) Interference spectra variation with strain; (c) Response to torsion for the HCSC-PBGF-based MZI. (d) Interference spectra variation with torsion.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR= λ 2 /Δ n eff L
C=2d/( d 2 + L 2 )

Metrics