Abstract

This work demonstrates the grating formation of bulk nanoparticle polymer composites through an improved interference optical system under ultrafast nanoseconds exposure of a silver nanoprisms (NPs) dispersed photo-polymerizable mixture in the case of 532 nm wavelength. The polymerizable mixture is composed of phenathrenequinone (PQ) (photoinitiator) and methyl methacrylate (MMA) (monomer). The mechanism in this bulk nanoparticle polymer composite is analyzed by mixing nonlocal polymerization driven diffusion (NPDD) model and absorption modulation caused by the spatial concentration distribution difference of silver NPs. We find that the attenuation of diffraction efficiency under pulsed exposure is due to the reciprocity law failure. This work presents an analysis of the cause of reciprocity failure and improvement in holographic properties by doping silver NPs. The optimized photopolymer presents diffraction efficiencies as high as 51.4% with 1.8 μs cumulative pulsed exposure. Cumulative gratings strength is also enhanced by 70% while doping silver NPs under 1.5 μs cumulative pulsed exposure.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures

Peng Liu, Fuwei Chang, Yu Zhao, Zeren Li, and Xiudong Sun
Opt. Express 26(2) 1072-1082 (2018)

Cationic photo-initiator titanocene dispersed PMMA photopolymers for holographic memories

Peng Liu, Linlin Wang, Yu Zhao, Zeren Li, and Xiudong Sun
OSA Continuum 1(3) 783-795 (2018)

Ultrafast volume holographic recording with exposure reciprocity matching for TI/PMMAs application

Peng Liu, Xiudong Sun, Yu Zhao, and Zeren Li
Opt. Express 27(14) 19583-19595 (2019)

References

  • View by:
  • |
  • |
  • |

  1. B. G. Manukhin, S. A. Chivilikhin, I. J. Schelkanova, N. V. Andreeva, D. A. Materikina, and O. V. Andreeva, “Reversible and irreversible alterations of the optical thickness of PQ/PMMA volume recording media samples. Part I: Experiment,” Appl. Opt. 56(26), 7351–7357 (2017).
    [Crossref] [PubMed]
  2. H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
    [Crossref]
  3. Y. W. Yu, C. H. Yang, T. H. Yang, S. H. Lin, and C. C. Sun, “Analysis of a lens-array modulated coaxial holographic data storage system with considering recording dynamics of material,” Opt. Express 25(19), 22947–22958 (2017).
    [Crossref] [PubMed]
  4. P. H. Wang, V. R. Singh, J. M. Wong, K. B. Sung, and Y. Luo, “Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings,” Opt. Lett. 42(2), 346–349 (2017).
    [Crossref] [PubMed]
  5. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
    [Crossref] [PubMed]
  6. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
    [Crossref]
  7. D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
    [Crossref]
  8. S. Liu, M. R. Gleeson, J. Guo, J. T. Sheridan, E. Tolstik, V. Matusevich, and R. Kowarschik, “Modeling the photochemical kinetics induced by holographic exposure in PQ/PMMA photopolymer material,” J. Opt. Soc. Am. B 28(11), 2833–2843 (2011).
    [Crossref]
  9. A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
    [Crossref]
  10. D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
    [Crossref] [PubMed]
  11. Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010).
    [Crossref] [PubMed]
  12. H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
    [Crossref]
  13. C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
    [Crossref] [PubMed]
  14. C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
    [Crossref]
  15. D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
    [Crossref]
  16. D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
    [Crossref]
  17. N. V. Ionina, O. V. Andreeva, O. V. Bandyuk, V. N. Mikhailov, and A. A. Paramonov, “Recording volume holograms with nanosecond laser pulses in the Diffen polymeric medium,” J. Opt. Technol. 71(4), 265–266 (2004).
    [Crossref]
  18. X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
    [Crossref]
  19. P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
    [Crossref] [PubMed]
  20. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  21. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [Crossref] [PubMed]
  22. R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
    [Crossref] [PubMed]
  23. K. Zhou, Y. Geng, H. Liu, S. Wang, D. Mao, and D. Yu, “Improvement of holographic sensing response in substrate-free acrylamide photopolymer,” Appl. Opt. 56(13), 3714–3724 (2017).
    [Crossref] [PubMed]
  24. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part II. Photopolymerization and model development,” J. Opt. Soc. Am. B 31(11), 2648–2656 (2014).
    [Crossref]
  25. H. Li, Y. Qi, and J. T. Sheridan, “Three-dimensional extended nonlocal photopolymerization driven diffusion model. Part I. Absorption,” J. Opt. Soc. Am. B 31(11), 2638–2647 (2014).
    [Crossref]
  26. E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16(15), 11253–11258 (2008).
    [Crossref] [PubMed]
  27. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  28. L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
    [Crossref]
  29. L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Prog. Org. Coat. 62(3), 351–357 (2008).
    [Crossref]
  30. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
    [Crossref]
  31. Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
    [Crossref]
  32. J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
    [Crossref]
  33. P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
    [Crossref] [PubMed]
  34. G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [Crossref]

2018 (2)

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (2)

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

2014 (5)

2013 (2)

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

2012 (1)

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

2011 (3)

2010 (3)

2009 (2)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[Crossref] [PubMed]

2008 (3)

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Prog. Org. Coat. 62(3), 351–357 (2008).
[Crossref]

E. Tolstik, O. Kashin, A. Matusevich, V. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Non-local response in glass-like polymer storage materials based on poly (methylmethacrylate) with distributed phenanthrenequinone,” Opt. Express 16(15), 11253–11258 (2008).
[Crossref] [PubMed]

2007 (1)

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

2004 (1)

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

2002 (1)

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

1999 (1)

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Andreeva, N. V.

Andreeva, O. V.

Arias, E.

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Balan, L.

L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Prog. Org. Coat. 62(3), 351–357 (2008).
[Crossref]

Bandyuk, O. V.

Barbastathis, G.

Barbosa-García, O.

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Blanche, P. A.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

Cao, L.

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Chang, F.

Chechik, V.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Chivilikhin, S. A.

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Churin, D.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Ferrio, K. B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Funston, A. M.

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[Crossref] [PubMed]

Gai, K.

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

Geng, Y.

K. Zhou, Y. Geng, H. Liu, S. Wang, D. Mao, and D. Yu, “Improvement of holographic sensing response in substrate-free acrylamide photopolymer,” Appl. Opt. 56(13), 3714–3724 (2017).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

Gleeson, M. R.

Goldenberg, L. M.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Guenther, B. D.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Guo, J.

He, Q.

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Helliwell, P.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Hendrickx, E.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Herlocker, J. A.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Ionina, N. V.

Jiang, J.

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

Jiang, Y.

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

Jin, G.

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Kashin, O.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kieu, K.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

Kippelen, B.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kostuk, R. K.

Kowarschik, R.

Krul, L. P.

Li, C.

C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Opt. Express 22(5), 5017–5028 (2014).
[Crossref] [PubMed]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Li, H.

Li, J.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Li, L.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Li, X.

Li, Z.

Lin, S. H.

Liu, H.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

K. Zhou, Y. Geng, H. Liu, S. Wang, D. Mao, and D. Yu, “Improvement of holographic sensing response in substrate-free acrylamide photopolymer,” Appl. Opt. 56(13), 3714–3724 (2017).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

Liu, P.

Liu, S.

Liu, Z.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

Lougnot, D. J.

L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Prog. Org. Coat. 62(3), 351–357 (2008).
[Crossref]

Luo, S.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

Luo, Y.

Lynn, B.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

Mahilny, U. V.

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

Maldonado, J. L.

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Manukhin, B. G.

Mao, D.

Materikina, D. A.

Matusevich, A.

Matusevich, V.

Matusevich, Y. I.

Meneses-Nava, M. A.

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Mery, S.

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Mikhailov, V. N.

Moggio, I.

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Mulvaney, P.

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[Crossref] [PubMed]

Murray, R. W.

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[Crossref] [PubMed]

Norwood, R. A.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

Olmos-López, M.

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Paramonov, A. A.

Peyghambarian, N.

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Psaltis, D.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

Qi, Y.

Ramos-Ortiz, G.

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Russo, J. M.

Sakhno, O. V.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Sardar, R.

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schelkanova, I. J.

Schneider, R.

L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Prog. Org. Coat. 62(3), 351–357 (2008).
[Crossref]

Sheridan, J. T.

Singh, V. R.

Smirnova, T. N.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Song, Q.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Steckman, G. J.

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

Stumpe, J.

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

Sun, C. C.

Sun, X.

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

Sung, K. B.

Tolstik, E.

Veniaminov, A. V.

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

Wang, J.

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

Wang, P. H.

Wang, S.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

K. Zhou, Y. Geng, H. Liu, S. Wang, D. Mao, and D. Yu, “Improvement of holographic sensing response in substrate-free acrylamide photopolymer,” Appl. Opt. 56(13), 3714–3724 (2017).
[Crossref] [PubMed]

Wang, W.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

Wong, J. M.

Yang, C. H.

Yang, T. H.

Yu, D.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

K. Zhou, Y. Geng, H. Liu, S. Wang, D. Mao, and D. Yu, “Improvement of holographic sensing response in substrate-free acrylamide photopolymer,” Appl. Opt. 56(13), 3714–3724 (2017).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer,” Opt. Express 19(15), 13787–13792 (2011).
[Crossref] [PubMed]

H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang, and X. Sun, “Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer,” Opt. Express 18(7), 6447–6454 (2010).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

Yu, Y. W.

Zhang, F.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Zhang, S.

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, Y.

P. Liu, F. Chang, Y. Zhao, Z. Li, and X. Sun, “Ultrafast volume holographic storage on PQ/PMMA photopolymers with nanosecond pulsed exposures,” Opt. Express 26(2), 1072–1082 (2018).
[Crossref] [PubMed]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

Zhou, K.

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

K. Zhou, Y. Geng, H. Liu, S. Wang, D. Mao, and D. Yu, “Improvement of holographic sensing response in substrate-free acrylamide photopolymer,” Appl. Opt. 56(13), 3714–3724 (2017).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74(16), 2253–2255 (1999).
[Crossref]

Z. Liu, G. J. Steckman, and D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80(5), 731–733 (2002).
[Crossref]

C. Li, L. Cao, J. Li, Q. He, G. Jin, S. Zhang, and F. Zhang, “Improvement of volume holographic performance by plasmon-induced holographic absorption grating,” Appl. Phys. Lett. 102(6), 061108 (2013).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Chem. Mater. (1)

L. M. Goldenberg, O. V. Sakhno, T. N. Smirnova, P. Helliwell, V. Chechik, and J. Stumpe, “Holographic composites with gold nanoparticles: nanoparticles promote polymer segregation,” Chem. Mater. 20(14), 4619–4627 (2008).
[Crossref]

J. Mod. Opt. (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Opt. Technol. (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Langmuir (1)

R. Sardar, A. M. Funston, P. Mulvaney, and R. W. Murray, “Gold Nanoparticles: Past, Present, and Future,” Langmuir 25(24), 13840–13851 (2009).
[Crossref] [PubMed]

Mater. Today: Proc. (1)

X. Sun, F. Chang, and K. Gai, “Optoelectronic fast response properties of PQ/PMMA polymer,” Mater. Today: Proc. 3(2), 632–634 (2016).
[Crossref]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[Crossref] [PubMed]

Opt. Commun. (4)

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part I: Short exposure,” Opt. Commun. 330, 191–198 (2014).
[Crossref]

D. Yu, H. Liu, Y. Geng, W. Wang, and Y. Zhao, “Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay,” Opt. Commun. 330, 199–207 (2014).
[Crossref]

D. Yu, H. Liu, Y. Jiang, and X. Sun, “Holographic storage stability in PQ-PMMA bulk photopolymer,” Opt. Commun. 283(21), 4219–4223 (2010).
[Crossref]

D. Yu, H. Liu, J. Wang, Y. Jiang, and X. Sun, “Study on holographic characteristics in ZnMA doped PQ-PMMA photopolymer,” Opt. Commun. 284(12), 2784–2788 (2011).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (2)

H. Liu, D. Yu, J. Wang, J. Jiang, and X. Sun, “Holographic grating formation in SiO2 nanoparticle-dispersed PQ-PMMA photopolymer,” Opt. Laser Technol. 44(4), 882–887 (2012).
[Crossref]

H. Liu, D. Yu, K. Zhou, S. Wang, S. Luo, L. Li, W. Wang, and Q. Song, “Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization,” Opt. Laser Technol. 101, 257–267 (2018).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

J. L. Maldonado, G. Ramos-Ortiz, M. A. Meneses-Nava, O. Barbosa-García, M. Olmos-López, E. Arias, and I. Moggio, “Effect of doping with C60 on photocurrent and hole mobility in polymer composites measured by using the time-of-flight technique,” Opt. Mater. 29(7), 821–826 (2007).
[Crossref]

Opt. Spectrosc. (1)

A. V. Veniaminov and U. V. Mahilny, “Holographic polymer materials with diffusion development: principles, arrangement, investigation, and applications,” Opt. Spectrosc. 115(6), 906–930 (2013).
[Crossref]

Prog. Org. Coat. (1)

L. Balan, R. Schneider, and D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization,” Prog. Org. Coat. 62(3), 351–357 (2008).
[Crossref]

Sci. Rep. (1)

P. A. Blanche, B. Lynn, D. Churin, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Diffraction response of photorefractive polymers over nine orders of magnitude of pulse duration,” Sci. Rep. 6(1), 29027 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Theoretical and experimental angular selectivity curves
Fig. 2
Fig. 2 TEM characterizations of three silver NP types
Fig. 3
Fig. 3 (a) Absorption spectra of samples. (b) Interference optical coupling system, BS, beam splitter; PBS, polarizing beam splitter.
Fig. 4
Fig. 4 Holographic mutual diffusion process (phase and absorption gratings).
Fig. 5
Fig. 5 Normalized spatial and temporal evolution of components concentrations under accumulated pulse exposure. 3D model for (a) PQ molecules, (b) Photoproducts, (c) silver NPs, and 2D model for (d) silver NPs.
Fig. 6
Fig. 6 Temporal evolution of diffraction efficiency with and without doping silver NPs, (a) the contribution of refractive index modulation. (b) the contribution of absorption modulation
Fig. 7
Fig. 7 Photo-chemical mechanism for pulsed and CW exposures.
Fig. 8
Fig. 8 Dark diffusion enhancement process of diffraction efficiency with one-shot pulse exposure, (a) different silver NP concentrations, (b) different silver NP types.
Fig. 9
Fig. 9 Synchronous measurement of diffraction efficiency with multi pulse exposure, (a), different silver NP types (b) different silver NP concentrations.
Fig. 10
Fig. 10 The response time in silver NPs dispersed PQ/PMMA composites. (a) different silver NP concentrations, (b) different silver NP types.
Fig. 11
Fig. 11 Diffraction efficiency differences. (a) comparisons of theoretical and experimental results under continuous pulsed exposure, (b) comparisons of different Ag doping concentration.
Fig. 12
Fig. 12 Cumulative gratings strength with and without silver NPs under 1.5 μs pulsed exposure.

Tables (1)

Tables Icon

Table 1 Sample with different silver NPs.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

M P Q + M A g + M p r o d u c t + M m a t r i x = 1
U ( x , z , t ) t = ( D ( U ) U + D ( U ) ) ( 2 U ( x , z , t ) x 2 + 2 U ( x , z , t ) z 2 )
G ( x , x ' ) = exp [ ( x x ' ) 2 2 σ ] / 2 π σ
[ P Q ] ( x , t ) t = R D ( 2 [ P Q ] ( x , t ) x 2 R 2 [ A g ] ( x , t ) x 2 ) G ( x , x ' ) F 0 ( x ' , t ) [ P Q ] ( x ' , t ) d x '
[ A g ] ( x , t ) t = R D ( 2 [ A g ] ( x , t ) x 2 R 2 [ P Q ] ( x , t ) x 2 )
[ p r o d u c t ] ( x , t ) = 0 t G ( x , x ' ) F 0 ( x ' , t ' ) [ P Q ] ( x ' , t ' ) d x ' d t '
Δ n ( t ) = C p Δ [ p r o d u c t ] ( x , t ) + C P Q Δ [ P Q ] ( x , t ) exp ( i ϕ ) + C A g Δ [ A g ] ( x , t )
κ = π n 1 λ + j α 1 2
S = j e α 0 d / cos θ e j ε 1 ν sin c ( ν 2 + ε 2 ) , ε = Δ θ k 0 d sin θ , ν = π n 1 d λ cos θ + j α 1 d 2 cos θ
η = exp ( 2 α 0 d cos θ ) { sin 2 [ π d n ( t ) λ cos θ ] + sh 2 ( α ( t ) d 2 cos θ ) }
PQ P 1 Q * P 3 Q * + PMMA / M M A HPQ + R PQ - P M M A
η = sin 2 ( Δ n π d λ cos θ )

Metrics