Abstract

A new technology for Brillouin optical correlation domain analysis (BOCDA) based on chaotic laser is proposed, analyzed and demonstrated. The numerical simulation shows that the stimulated acoustic field has the secondary spurious peaks, which are the result of a weak amplitude autocorrelation of the chaotic signal occurring at the delay time of the external cavity, i.e., time delay signature (TDS). These secondary spurious peaks deteriorate the Brillouin gain spectrum and decrease the performance of the chaotic BOCDA system. The effect of the injection current and feedback strength on the TDS suppression is theoretically analyzed. By optimizing the two free parameters, chaotic laser sources operate in a TDS suppression region. Ultimately, a 3.2 km long single-mode fiber with a spatial resolution of 7.4 cm is experimentally demonstrated. The uncertainty of the local Brillouin frequency shift is ± 1.2 MHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-gated chaotic Brillouin optical correlation domain analysis

Jianzhong Zhang, Yahui Wang, Mingjiang Zhang, Qian Zhang, Mengwen Li, Chenyu Wu, Lijun Qiao, and Yuncai Wang
Opt. Express 26(13) 17597-17607 (2018)

Chaotic Brillouin optical correlation-domain analysis

Jianzhong Zhang, Mingtao Zhang, Mingjiang Zhang, Yi Liu, Changkun Feng, Yahui Wang, and Yuncai Wang
Opt. Lett. 43(8) 1722-1725 (2018)

True random coding for Brillouin optical correlation domain analysis

Mengwen Li, Xiaocheng Zhang, Jianzhong Zhang, Jianguo Zhang, Mingjiang Zhang, Lijun Qiao, and Tao Wang
OSA Continuum 2(7) 2234-2243 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett. 18(3), 185 (1993).
    [Crossref] [PubMed]
  2. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15(18), 1038–1040 (1990).
    [Crossref] [PubMed]
  3. J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express 21(1), 145–153 (2013).
    [Crossref] [PubMed]
  4. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [Crossref] [PubMed]
  5. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005).
    [Crossref]
  6. X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).
    [Crossref] [PubMed]
  7. M. A. Soto, X. Angulovinnuesa, S. Martinlopez, S. H. Chin, J. D. Aniacastañon, P. Corredera, E. Rochat, M. Gonzalezherraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32(1), 152–162 (2013).
    [Crossref]
  8. A. Fellay, L. Thévenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997).
    [Crossref]
  9. Y. Dong, X. Bao, and W. Li, “Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor,” Appl. Opt. 48(22), 4297–4301 (2009).
    [Crossref] [PubMed]
  10. Y. Dong, H. Zhang, L. Chen, and X. Bao, “2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair,” Appl. Opt. 51(9), 1229–1235 (2012).
    [Crossref] [PubMed]
  11. J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
    [Crossref]
  12. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol. 25(1), 381–386 (2007).
    [Crossref]
  13. L. Thévenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes”, in 19th International Conference on Optical Fiber Sensors, 2008 OSA Technical Digest Series (Optical Society of America, 2008), 70043N.
    [Crossref]
  14. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
    [Crossref] [PubMed]
  15. K. Hotate and T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique-Proposal, Experiment and Simulation,” IEICE Trans. Electron. 84(3), 405–412 (2000).
  16. Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
    [Crossref] [PubMed]
  17. A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
    [Crossref]
  18. A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), 1–8 (2016).
    [Crossref]
  19. Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440 000 resolution points,” J. Lightwave Technol. 34(19), 4421–4429 (2016).
    [Crossref]
  20. O. Shlomi, E. Preter, D. Ba, Y. London, Y. Antman, and A. Zadok, “Double-pulse pair Brillouin optical correlation-domain analysis,” Opt. Express 24(23), 26867–26876 (2016).
    [Crossref] [PubMed]
  21. R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Opt. Express 22(10), 12070–12078 (2014).
    [Crossref] [PubMed]
  22. Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
    [Crossref]
  23. J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.
  24. M. Santagiustina and L. Ursini, “Dynamic Brillouin gratings permanently sustained by chaotic lasers,” Opt. Lett. 37(5), 893–895 (2012).
    [Crossref] [PubMed]
  25. J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
    [Crossref]
  26. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–890 (2009).
    [Crossref]
  27. J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17(8), 6357–6367 (2009).
    [Crossref] [PubMed]
  28. Y. L. Li, Y. C. Wang, and A. B. Wang, “Message filtering characteristics of semiconductor laser as receiver in optical chaos communication,” Opt. Commun. 281(9), 2656–2662 (2008).
    [Crossref]
  29. H. D. I. Abarbanel, R. Brown, and M. B. Kennel, “Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data,” Int. J. Mod. Phys. 5(9), 1347–1375 (1991).
    [Crossref]
  30. J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, and S. B. Lee, “Differential measurement scheme for Brillouin optical correlation domain analysis,” Opt. Express 20(24), 27094–27101 (2012).
    [Crossref] [PubMed]
  31. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]
  32. Y. Wang, L. Kong, A. Wang, and L. Fan, “Coherence length tunable semiconductor laser with optical feedback,” Appl. Opt. 48(5), 969–973 (2009).
    [Crossref] [PubMed]
  33. A. López-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-measuring time-gated BOCDA,” Opt. Lett. 42(19), 3924–3927 (2017).
    [Crossref] [PubMed]

2017 (2)

J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

A. López-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-measuring time-gated BOCDA,” Opt. Lett. 42(19), 3924–3927 (2017).
[Crossref] [PubMed]

2016 (4)

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), 1–8 (2016).
[Crossref]

Y. London, Y. Antman, E. Preter, N. Levanon, and A. Zadok, “Brillouin optical correlation domain analysis addressing 440 000 resolution points,” J. Lightwave Technol. 34(19), 4421–4429 (2016).
[Crossref]

O. Shlomi, E. Preter, D. Ba, Y. London, Y. Antman, and A. Zadok, “Double-pulse pair Brillouin optical correlation-domain analysis,” Opt. Express 24(23), 26867–26876 (2016).
[Crossref] [PubMed]

2015 (1)

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

2014 (1)

2013 (3)

2012 (4)

2011 (1)

2009 (5)

2008 (3)

2007 (1)

2005 (1)

2000 (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique-Proposal, Experiment and Simulation,” IEICE Trans. Electron. 84(3), 405–412 (2000).

1993 (1)

1991 (1)

H. D. I. Abarbanel, R. Brown, and M. B. Kennel, “Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data,” Int. J. Mod. Phys. 5(9), 1347–1375 (1991).
[Crossref]

1990 (1)

Abarbanel, H. D. I.

H. D. I. Abarbanel, R. Brown, and M. B. Kennel, “Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data,” Int. J. Mod. Phys. 5(9), 1347–1375 (1991).
[Crossref]

Alahbabi, M. N.

Angulovinnuesa, X.

Aniacastañon, J. D.

Antman, Y.

Ba, D.

Bao, X.

Bao, X. Y.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Bolognini, G.

Brown, A. W.

Brown, K.

Brown, R.

H. D. I. Abarbanel, R. Brown, and M. B. Kennel, “Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data,” Int. J. Mod. Phys. 5(9), 1347–1375 (1991).
[Crossref]

Chen, L.

Chin, S. H.

Cho, Y. T.

Citrin, D. S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–890 (2009).
[Crossref]

Cohen, R.

Colpitts, B. G.

Corredera, P.

Denisov, A.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), 1–8 (2016).
[Crossref]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Di Pasquale, F.

Dong, Y.

Dong, Y. K.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Fan, L.

Feng, C. K.

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Gonzalezherraez, M.

Gonzalez-Herraez, M.

Hasegawa, T.

K. Hotate and T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique-Proposal, Experiment and Simulation,” IEICE Trans. Electron. 84(3), 405–412 (2000).

He, S. Y.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

He, Z.

Horiguchi, T.

Hotate, K.

Hu, J.

Jeong, J. H.

Jeong, J. M.

Jia, X. H.

Kennel, M. B.

H. D. I. Abarbanel, R. Brown, and M. B. Kennel, “Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data,” Int. J. Mod. Phys. 5(9), 1347–1375 (1991).
[Crossref]

Kong, L.

Koyamada, Y.

Kurashima, T.

Lee, K.

Lee, S. B.

Levanon, N.

Li, H.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Li, J.

Li, S. L.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Li, W.

Li, Y.

J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

Li, Y. L.

Y. L. Li, Y. C. Wang, and A. B. Wang, “Message filtering characteristics of semiconductor laser as receiver in optical chaos communication,” Opt. Commun. 281(9), 2656–2662 (2008).
[Crossref]

Li, Z. P.

J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Liu, H.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Liu, Y.

J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Locquet, A.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–890 (2009).
[Crossref]

London, Y.

López-Gil, A.

Ma, Z.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Martinlopez, S.

Martin-Lopez, S.

Mizuno, Y.

Newson, T. P.

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–890 (2009).
[Crossref]

Peng, F.

Preter, E.

Primerov, N.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Rao, Y. J.

Rochat, E.

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–890 (2009).
[Crossref]

Sancho, J.

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Santagiustina, M.

Sciamanna, M.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–890 (2009).
[Crossref]

Shimizu, K.

Shlomi, O.

Song, K. Y.

Soto, M. A.

Tateda, M.

Thévenaz, L.

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), 1–8 (2016).
[Crossref]

M. A. Soto, X. Angulovinnuesa, S. Martinlopez, S. H. Chin, J. D. Aniacastañon, P. Corredera, E. Rochat, M. Gonzalezherraez, and L. Thévenaz, “Extending the Real Remoteness of Long-Range Brillouin Optical Time-Domain Fiber Analyzers,” J. Lightwave Technol. 32(1), 152–162 (2013).
[Crossref]

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Ursini, L.

Wang, A.

Wang, A. B.

J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17(8), 6357–6367 (2009).
[Crossref] [PubMed]

Y. L. Li, Y. C. Wang, and A. B. Wang, “Message filtering characteristics of semiconductor laser as receiver in optical chaos communication,” Opt. Commun. 281(9), 2656–2662 (2008).
[Crossref]

Wang, J. F.

Wang, Y.

Wang, Y. C.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17(8), 6357–6367 (2009).
[Crossref] [PubMed]

Y. L. Li, Y. C. Wang, and A. B. Wang, “Message filtering characteristics of semiconductor laser as receiver in optical chaos communication,” Opt. Commun. 281(9), 2656–2662 (2008).
[Crossref]

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Wang, Y. H.

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Wang, Z. N.

Wu, H.

Xu, J. L.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Yan, X. D.

Yao, Y.

Yuan, C. X.

Zadok, A.

Zhang, H.

Zhang, J. Z.

J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17(8), 6357–6367 (2009).
[Crossref] [PubMed]

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Zhang, M.

J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Zhang, M. J.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Zhang, M. T.

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Zhang, W. L.

Zhang, X.

Zhang, Y. N.

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

Zhang, Z. H.

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Zhao, X.

Zhu, Y. Y.

Zou, W.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–890 (2009).
[Crossref]

IEEE Photonics J. (1)

Z. Ma, M. J. Zhang, Y. Liu, X. Y. Bao, H. Liu, Y. N. Zhang, and Y. C. Wang, “Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum,” IEEE Photonics J. 7(4), 6100407 (2015).
[Crossref]

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, “Measurement of Brillouin Gain Spectrum Distribution along an Optical Fiber Using a Correlation-Based Technique-Proposal, Experiment and Simulation,” IEICE Trans. Electron. 84(3), 405–412 (2000).

Int. J. Mod. Phys. (1)

H. D. I. Abarbanel, R. Brown, and M. B. Kennel, “Lyapunov exponents in chaotic systems: their importance and their evaluation using observed data,” Int. J. Mod. Phys. 5(9), 1347–1375 (1991).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

A. Zadok, Y. Antman, N. Primerov, A. Denisov, J. Sancho, and L. Thévenaz, “Random-access distributed fiber sensing,” Laser Photonics Rev. 6(5), L1–L5 (2012).
[Crossref]

Light Sci. Appl. (1)

A. Denisov, M. A. Soto, and L. Thévenaz, “Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration,” Light Sci. Appl. 5(5), 1–8 (2016).
[Crossref]

Meas. Sci. Technol. (1)

J. L. Xu, Y. K. Dong, Z. H. Zhang, S. L. Li, S. Y. He, and H. Li, “Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors,” Meas. Sci. Technol. 27(12), 124017 (2016).
[Crossref]

Opt. Commun. (2)

J. Z. Zhang, Z. P. Li, M. Zhang, Y. Liu, and Y. Li, “Characterization of Brillouin dynamic grating based on chaotic laser,” Opt. Commun. 396, 210–215 (2017).
[Crossref]

Y. L. Li, Y. C. Wang, and A. B. Wang, “Message filtering characteristics of semiconductor laser as receiver in optical chaos communication,” Opt. Commun. 281(9), 2656–2662 (2008).
[Crossref]

Opt. Express (9)

Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008).
[Crossref] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
[Crossref] [PubMed]

O. Shlomi, E. Preter, D. Ba, Y. London, Y. Antman, and A. Zadok, “Double-pulse pair Brillouin optical correlation-domain analysis,” Opt. Express 24(23), 26867–26876 (2016).
[Crossref] [PubMed]

R. Cohen, Y. London, Y. Antman, and A. Zadok, “Brillouin optical correlation domain analysis with 4 millimeter resolution based on amplified spontaneous emission,” Opt. Express 22(10), 12070–12078 (2014).
[Crossref] [PubMed]

J. H. Jeong, K. Lee, K. Y. Song, J. M. Jeong, and S. B. Lee, “Differential measurement scheme for Brillouin optical correlation domain analysis,” Opt. Express 20(24), 27094–27101 (2012).
[Crossref] [PubMed]

J. Hu, X. Zhang, Y. Yao, and X. Zhao, “A BOTDA with break interrogation function over 72 km sensing length,” Opt. Express 21(1), 145–153 (2013).
[Crossref] [PubMed]

X. H. Jia, Y. J. Rao, C. X. Yuan, J. Li, X. D. Yan, Z. N. Wang, W. L. Zhang, H. Wu, Y. Y. Zhu, and F. Peng, “Hybrid distributed Raman amplification combining random fiber laser based 2nd-order and low-noise LD based 1st-order pumping,” Opt. Express 21(21), 24611–24619 (2013).
[Crossref] [PubMed]

J. Z. Zhang, A. B. Wang, J. F. Wang, and Y. C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17(8), 6357–6367 (2009).
[Crossref] [PubMed]

Y. Mizuno, Z. He, and K. Hotate, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on temporal gating scheme,” Opt. Express 17(11), 9040–9046 (2009).
[Crossref] [PubMed]

Opt. Lett. (5)

Other (3)

L. Thévenaz and S. F. Mafang, “Distributed fiber sensing using Brillouin echoes”, in 19th International Conference on Optical Fiber Sensors, 2008 OSA Technical Digest Series (Optical Society of America, 2008), 70043N.
[Crossref]

A. Fellay, L. Thévenaz, M. Facchini, M. Nikles, and P. Robert, “Distributed sensing using stimulated Brillouin scattering: towards ultimate resolution,” in 12th International Conference on Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, 1997).
[Crossref]

J. Z. Zhang, M. T. Zhang, M. J. Zhang, Y. Liu, C. K. Feng, Y. H. Wang, and Y. C. Wang, “Chaotic Brillouin optical correlation domain analysis,” Opt. Lett.under review.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The three-dimensional and two-dimension projection distributions of the acoustic wave field Q(z, t).
Fig. 2
Fig. 2 The distribution maps of the autocorrelation coefficients at the external feedback delays τ = 1.2 ns (a) and τ = 115 ns (b) are theoretically given, where the injection current I / Ith and the feedback rate k vary from 1 to 1.6 and from 4 to 24 GHz, respectively.
Fig. 3
Fig. 3 Experimental setup of chaotic BOCDA system
Fig. 4
Fig. 4 The distribution map of the correlation coefficient at the external feedback delay τ = 115 ns under different injection currents and feedback strengths. Three representative operating points, i.e., O (34, 0.112), P (29, 0.139) and Q (24, 0.156) are arbitrarily chosen from three TDS distribution regions, respectively.
Fig. 5
Fig. 5 (a1), (b1) and (c1) optical spectra; (a2), (b2) and (c2) power spectra; (a3), (b3) and (c3) time series; (a4), (b4) and (c4) autocorrelation traces; (a), (b) and (c) correspond to the three operating points respectively, i.e., O(34, 0.112), P(29, 0.139) and Q(24, 0.156) shown in Fig. 3.
Fig. 6
Fig. 6 The Brillouin gain spectra corresponding to the above operation points: (a) O, (b) P and (c) Q. The blue line represents the correlation peak located at 1.6 km of the FUT with the ambient temperature of 25 °C. The red line represents the correlation peak located at the middle of the 60-m heated fiber with the temperature of 55 °C.
Fig. 7
Fig. 7 (a). Measured distribution of the BGS along the FUT; 7(b). that of the BFS along the FUT.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dE( t ) dt = 1 2 ( 1+iα )[ G(t) 1 τ p ]E( t )+kE( tτ )exp( iωτ ),
dN( t ) dt = I qV 1 τ n N( t )G( t ) | E(t) | 2 ,
G( t )= G[ N(t) N 0 ] 1+ε | E(t) | 2 .
k= 1 τ in (1 r 0 2 )r r 0 ,
Q(t,z)= 1 2 τ B 0 t exp( t 1 t 2 τ B ) A( t 1 z V g ) A * [ t 1 z V g +θ( z ) ]d t 1 ,
Q( t,z ) ¯ = 1 2 τ B 0 t exp( t 1 t 2 τ B ) A( t 1 z V g ) A * [ t 1 z V g +θ( z ) ] ¯ d t 1 =C( θ( z ) ),
δ f = i=1 n ( f i f ¯ ) n( n1 ) ,

Metrics