Abstract

Stimulating higher-order nonlinear optical (HO-NLO) response from individual semiconductor nanostructures is challenging due to the low nonlinear coefficients and the small number of molecules within the nanostructures. In this work, we demonstrate efficient third harmonic generation and multi-photon luminescence in CdSe nanowaveguides by means of evanescent wave coupling technique. Under appropriate conditions, a coupling efficiency of 70% can be achieved from an optical microfiber to a single CdSe nanowaveguide, leading to the enhanced HO-NLO effects. Provided a high signal-to-noise ratio, we thus observe a fourth order excitation power dependence of 3-photon luminescence, and we attribute it to surface defect mechanism based on the recombination of free carriers. This work provides an alternative for efficient excitation for HO-NLO, which also makes these hard-to-produce signals more feasible in the applications of nonlinear optical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers

Fuxing Gu, Hongbin Cui, Feng Liao, Xing Lin, Haifeng Wang, and Heping Zeng
Opt. Express 24(20) 23361-23367 (2016)

High-order nonlinear optical response of a polymer nanocomposite film incorporating semiconducotor CdSe quantum dots

Xiangming Liu, Yusuke Adachi, Yasuo Tomita, Juro Oshima, Takuya Nakashima, and Tsuyoshi Kawai
Opt. Express 20(12) 13457-13469 (2012)

Nonlinear optical activity effects in complex anisotropic three-dimensional media

Mikko J. Huttunen, Mari Partanen, Godofredo Bautista, Shi-Wei Chu, and Martti Kauranen
Opt. Mater. Express 5(1) 11-21 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
    [Crossref] [PubMed]
  2. Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
    [Crossref] [PubMed]
  3. L. Tong and J. X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
    [Crossref]
  4. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  5. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [Crossref] [PubMed]
  6. D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
    [Crossref]
  7. S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
    [Crossref]
  8. F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
    [Crossref]
  9. H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
    [Crossref]
  10. J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
    [Crossref]
  11. X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
    [Crossref]
  12. F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top. Quantum Electron. 21(1), 480–485 (2015).
    [Crossref]
  13. C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
    [Crossref] [PubMed]
  14. J. Yu, F. Liao, F. Gu, and H. Zeng, “Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire,” Sci. Rep. 6(1), 33181 (2016).
    [Crossref] [PubMed]
  15. J. Dai, J. H. Zeng, S. Lan, X. Wan, and S. L. Tie, “Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods,” Opt. Express 21(8), 10025–10038 (2013).
    [Crossref] [PubMed]
  16. H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
    [Crossref] [PubMed]
  17. R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
    [Crossref]
  18. C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
    [Crossref] [PubMed]
  19. A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
    [Crossref]
  20. R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
    [Crossref] [PubMed]
  21. A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
    [Crossref]
  22. C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  23. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
    [Crossref]
  24. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  25. K. Wang, W. Wen, Y. Wang, K. Wang, J. He, J. Wang, P. Zhai, Y. Yang, and P. Qiu, “Order-of-magnitude multiphoton signal enhancement based on characterization of absorption spectra of immersion oils at the 1700-nm window,” Opt. Express 25(6), 5909–5916 (2017).
    [Crossref] [PubMed]
  26. R. D. Frankel, “Discussion of methods for depth enhancement in single and multiphoton-stimulated emission microscopy,” J. Opt. Soc. Am. B 33(7), 1421–1438 (2016).
    [Crossref]
  27. R. W. Boyd, Nonlinear Optics (Academic, 2010).
  28. G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
    [Crossref]
  29. G. S. He, K. T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
    [Crossref] [PubMed]
  30. W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
    [Crossref] [PubMed]
  31. F. Zhou and W. Ji, “Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection,” Laser Photonics Rev. 11(4), 1700021 (2017).
    [Crossref]
  32. M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
    [Crossref] [PubMed]
  33. S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
    [Crossref]
  34. M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
    [Crossref] [PubMed]
  35. J. Zhou, F. Gu, X. Liu, and J. Qiu, “Enhanced multiphoton upconversion in single nanowires by waveguiding excitation,” Adv. Opt. Mater. 4(8), 1174–1178 (2016).
    [Crossref]
  36. F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
    [Crossref] [PubMed]
  37. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
    [Crossref] [PubMed]
  38. F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
    [Crossref]
  39. F. Gu, H. Cui, F. Liao, X. Lin, H. Wang, and H. Zeng, “Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers,” Opt. Express 24(20), 23361–23367 (2016).
    [Crossref] [PubMed]
  40. K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
    [Crossref] [PubMed]
  41. W. He, B. Li, and E. Y. Pun, “Wavelength, cross-angle, and core-diameter dependence of coupling efficiency in nanowire evanescent wave coupling,” Opt. Lett. 34(10), 1597–1599 (2009).
    [Crossref] [PubMed]
  42. F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
    [Crossref] [PubMed]
  43. F. Vietmeyer, P. A. Frantsuzov, B. Janko, and M. Kuno, “Carrier recombination dynamics in individual CdSe nanowires,” Phys. Rev. B 83(11), 115319 (2011).
    [Crossref]
  44. F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
    [Crossref] [PubMed]
  45. D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
    [Crossref]
  46. C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
    [Crossref]

2018 (1)

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

2017 (5)

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

F. Zhou and W. Ji, “Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection,” Laser Photonics Rev. 11(4), 1700021 (2017).
[Crossref]

K. Wang, W. Wen, Y. Wang, K. Wang, J. He, J. Wang, P. Zhai, Y. Yang, and P. Qiu, “Order-of-magnitude multiphoton signal enhancement based on characterization of absorption spectra of immersion oils at the 1700-nm window,” Opt. Express 25(6), 5909–5916 (2017).
[Crossref] [PubMed]

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

2016 (7)

S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
[Crossref]

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

J. Yu, F. Liao, F. Gu, and H. Zeng, “Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire,” Sci. Rep. 6(1), 33181 (2016).
[Crossref] [PubMed]

R. D. Frankel, “Discussion of methods for depth enhancement in single and multiphoton-stimulated emission microscopy,” J. Opt. Soc. Am. B 33(7), 1421–1438 (2016).
[Crossref]

F. Gu, H. Cui, F. Liao, X. Lin, H. Wang, and H. Zeng, “Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers,” Opt. Express 24(20), 23361–23367 (2016).
[Crossref] [PubMed]

J. Zhou, F. Gu, X. Liu, and J. Qiu, “Enhanced multiphoton upconversion in single nanowires by waveguiding excitation,” Adv. Opt. Mater. 4(8), 1174–1178 (2016).
[Crossref]

2015 (5)

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top. Quantum Electron. 21(1), 480–485 (2015).
[Crossref]

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

2014 (4)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

2013 (2)

J. Dai, J. H. Zeng, S. Lan, X. Wan, and S. L. Tie, “Competition between second harmonic generation and two-photon-induced luminescence in single, double and multiple ZnO nanorods,” Opt. Express 21(8), 10025–10038 (2013).
[Crossref] [PubMed]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

2012 (1)

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

2011 (7)

F. Vietmeyer, P. A. Frantsuzov, B. Janko, and M. Kuno, “Carrier recombination dynamics in individual CdSe nanowires,” Phys. Rev. B 83(11), 115319 (2011).
[Crossref]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[Crossref] [PubMed]

L. Tong and J. X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[Crossref]

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
[Crossref]

2010 (2)

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[Crossref] [PubMed]

2009 (2)

W. He, B. Li, and E. Y. Pun, “Wavelength, cross-angle, and core-diameter dependence of coupling efficiency in nanowire evanescent wave coupling,” Opt. Lett. 34(10), 1597–1599 (2009).
[Crossref] [PubMed]

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

2008 (1)

2007 (4)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

G. S. He, K. T. Yong, Q. Zheng, Y. Sahoo, A. Baev, A. I. Ryasnyanskiy, and P. N. Prasad, “Multi-photon excitation properties of CdSe quantum dots solutions and optical limiting behavior in infrared range,” Opt. Express 15(20), 12818–12833 (2007).
[Crossref] [PubMed]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[Crossref] [PubMed]

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

2002 (1)

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

2001 (1)

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

1999 (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

1989 (1)

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
[Crossref]

Agarwal, R.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Aspetti, C. O.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Baek, H.

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

Baev, A.

Bai, R.

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, Q.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Barrelet, C. J.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Bertolotti, M.

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Bhaumik, S.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

Bloemer, M. J.

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Bowden, C. M.

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Brönstrup, G.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Cai, F.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

Centini, M.

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Chakrabortty, S.

G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
[Crossref]

Chan, Y.

G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
[Crossref]

Chang, C.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Chang-Hasnain, C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

Chen, B.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, L.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Chen, R.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

Chen, T.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

Chen, W.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

Cheng, J. X.

L. Tong and J. X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[Crossref]

Christiansen, S.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Chu, L.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Chu, S.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Chuang, L. C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

Corcoran, B.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Crankshaw, S.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

Cui, H.

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

D’Aguanno, G.

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Dai, J.

Degen, C.

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Dijaili, S.

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
[Crossref]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Eaton, S. W.

S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
[Crossref]

Ee, H. S.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Eggleton, B. J.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Elsaber, W.

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Fan, F.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Feng, X.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Fischer, I.

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Foster, M. A.

Frankel, R. D.

Frantsuzov, P. A.

F. Vietmeyer, P. A. Frantsuzov, B. Janko, and M. Kuno, “Carrier recombination dynamics in individual CdSe nanowires,” Phys. Rev. B 83(11), 115319 (2011).
[Crossref]

Fritzsche, W.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Fu, A.

S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
[Crossref]

Gaeta, A. L.

Gao, Q.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Geiss, R.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Grange, R.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Grätzel, M.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

Grillet, C.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Gu, F.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

J. Yu, F. Liao, F. Gu, and H. Zeng, “Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire,” Sci. Rep. 6(1), 33181 (2016).
[Crossref] [PubMed]

F. Gu, H. Cui, F. Liao, X. Lin, H. Wang, and H. Zeng, “Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers,” Opt. Express 24(20), 23361–23367 (2016).
[Crossref] [PubMed]

J. Zhou, F. Gu, X. Liu, and J. Qiu, “Enhanced multiphoton upconversion in single nanowires by waveguiding excitation,” Adv. Opt. Mater. 4(8), 1174–1178 (2016).
[Crossref]

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top. Quantum Electron. 21(1), 480–485 (2015).
[Crossref]

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[Crossref] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[Crossref] [PubMed]

Gu, Z.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

Guo, B.

Gutsche, C.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

He, G. S.

He, J.

He, S.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

He, W.

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Hu, R.

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Huang, K.

Hyun, J. K.

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

Iliew, R.

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Jagadish, C.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Janko, B.

F. Vietmeyer, P. A. Frantsuzov, B. Janko, and M. Kuno, “Carrier recombination dynamics in individual CdSe nanowires,” Phys. Rev. B 83(11), 115319 (2011).
[Crossref]

Jennemann, G.

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Ji, W.

F. Zhou and W. Ji, “Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection,” Laser Photonics Rev. 11(4), 1700021 (2017).
[Crossref]

Jiang, N.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Kang, T.

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

Kim, D.

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

Kiometzis, M.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Kivshar, Y. S.

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Krauss, T. F.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Kuno, M.

F. Vietmeyer, P. A. Frantsuzov, B. Janko, and M. Kuno, “Carrier recombination dynamics in individual CdSe nanowires,” Phys. Rev. B 83(11), 115319 (2011).
[Crossref]

Kwon, S. H.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Lan, S.

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Leiterer, C.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Leu, S.

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Li, B.

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, Y.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

Liao, F.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

F. Gu, H. Cui, F. Liao, X. Lin, H. Wang, and H. Zeng, “Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers,” Opt. Express 24(20), 23361–23367 (2016).
[Crossref] [PubMed]

J. Yu, F. Liao, F. Gu, and H. Zeng, “Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire,” Sci. Rep. 6(1), 33181 (2016).
[Crossref] [PubMed]

Lin, K.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Lin, X.

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

F. Gu, H. Cui, F. Liao, X. Lin, H. Wang, and H. Zeng, “Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers,” Opt. Express 24(20), 23361–23367 (2016).
[Crossref] [PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Linghu, S.

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

Lipson, M.

Liu, T.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Liu, W.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Liu, X.

J. Zhou, F. Gu, X. Liu, and J. Qiu, “Enhanced multiphoton upconversion in single nanowires by waveguiding excitation,” Adv. Opt. Mater. 4(8), 1174–1178 (2016).
[Crossref]

Liu, Z.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Lysov, A.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Mathews, N.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Meixner, A. J.

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Mhaisalkar, S.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

Moewe, M.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

Mokkapati, S.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Monat, C.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Moss, D. J.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Neshev, D. N.

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Ngiam, S. W.

G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
[Crossref]

Ning, C.

S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
[Crossref]

Ning, C. Z.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

O’Faolain, L.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Oh, H.

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

Pan, A.

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

Park, H. G.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Parkinson, P.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Peng, J.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

Peng, T.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Pertsch, T.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Prasad, P. N.

Prost, W.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Pun, E. Y.

Qian, J.

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Qin, A.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Qin, W.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Qiu, J.

J. Zhou, F. Gu, X. Liu, and J. Qiu, “Enhanced multiphoton upconversion in single nanowires by waveguiding excitation,” Adv. Opt. Mater. 4(8), 1174–1178 (2016).
[Crossref]

Qiu, P.

Ren, M. L.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Rettig, R.

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Richter, J.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ryasnyanskiy, A. I.

Sahoo, Y.

Saxena, D.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Scalora, M.

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Schrempel, F.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

Sergeyev, A.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Shen, Y. R.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Shi, X.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Shieh, D.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Sibilia, C.

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Smith, J. S.

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
[Crossref]

Solntsev, A. S.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Stolz, W.

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Sukhorukov, A. A.

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Sum, T. C.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
[Crossref]

Sun, C.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Sun, H.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Sun, L.

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

Tai, S. P.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Tan, H. H.

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Tang, B. Z.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Tegude, F. J.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Tie, S. L.

Tong, L.

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

L. Tong and J. X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[Crossref]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[Crossref] [PubMed]

K. Huang, S. Yang, and L. Tong, “Modeling of evanescent coupling between two parallel optical nanowires,” Appl. Opt. 46(9), 1429–1434 (2007).
[Crossref] [PubMed]

Tran, T.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

Tünnermann, A.

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Turner, A. C.

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

Vakhshoori, D.

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
[Crossref]

Veldhuis, S. A.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

Vietmeyer, F.

F. Vietmeyer, P. A. Frantsuzov, B. Janko, and M. Kuno, “Carrier recombination dynamics in individual CdSe nanowires,” Phys. Rev. B 83(11), 115319 (2011).
[Crossref]

Wackenhut, F.

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

Walker, J.

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
[Crossref]

Wan, X.

Wang, A.

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Wang, H.

F. Gu, H. Cui, F. Liao, X. Lin, H. Wang, and H. Zeng, “Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers,” Opt. Express 24(20), 23361–23367 (2016).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, J.

Wang, K.

Wang, P.

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[Crossref] [PubMed]

Wang, S.

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
[Crossref]

Wang, X.

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

Wang, Y.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

K. Wang, W. Wen, Y. Wang, K. Wang, J. He, J. Wang, P. Zhai, Y. Yang, and P. Qiu, “Order-of-magnitude multiphoton signal enhancement based on characterization of absorption spectra of immersion oils at the 1700-nm window,” Opt. Express 25(6), 5909–5916 (2017).
[Crossref] [PubMed]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

Wen, W.

Wen, Y.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

White, T. P.

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Wong, A. B.

S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
[Crossref]

Wu, G.

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top. Quantum Electron. 21(1), 480–485 (2015).
[Crossref]

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Wu, Q.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Wu, X.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Wu, Y.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Xi, W.

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Xie, F.

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

Xin, C.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

Xing, G.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
[Crossref]

Xu, J.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

Xu, Q.

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

Xu, Y.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yang, P.

S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
[Crossref]

Yang, S.

Yang, Y.

Yang, Z.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[Crossref] [PubMed]

Yi, G.

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

Yin, L.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Yong, K. T.

Yu, C.

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

Yu, H.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express 19(11), 10880–10885 (2011).
[Crossref] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[Crossref] [PubMed]

Yu, J.

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

J. Yu, F. Liao, F. Gu, and H. Zeng, “Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire,” Sci. Rep. 6(1), 33181 (2016).
[Crossref] [PubMed]

Yu, S.

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

Zeng, H.

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

J. Yu, F. Liao, F. Gu, and H. Zeng, “Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire,” Sci. Rep. 6(1), 33181 (2016).
[Crossref] [PubMed]

F. Gu, H. Cui, F. Liao, X. Lin, H. Wang, and H. Zeng, “Mode tailoring in subwavelength-dimensional semiconductor micro/nanowaveguides by coupling optical microfibers,” Opt. Express 24(20), 23361–23367 (2016).
[Crossref] [PubMed]

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top. Quantum Electron. 21(1), 480–485 (2015).
[Crossref]

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Zeng, J. H.

Zhai, P.

Zhang, H.

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Zhang, L.

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top. Quantum Electron. 21(1), 480–485 (2015).
[Crossref]

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Zhao, S.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Zheng, Q.

Zheng, Y.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Zhou, F.

F. Zhou and W. Ji, “Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection,” Laser Photonics Rev. 11(4), 1700021 (2017).
[Crossref]

Zhou, J.

J. Zhou, F. Gu, X. Liu, and J. Qiu, “Enhanced multiphoton upconversion in single nanowires by waveguiding excitation,” Adv. Opt. Mater. 4(8), 1174–1178 (2016).
[Crossref]

Zhu, Y.

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Zhu, Z.

Y. Wang, R. Hu, W. Xi, F. Cai, S. Wang, Z. Zhu, R. Bai, and J. Qian, “Red emissive AIE nanodots with high two-photon absorption efficiency at 1040 nm for deep-tissue in vivo imaging,” Biomed. Opt. Express 6(10), 3783–3794 (2015).
[Crossref] [PubMed]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Zhuang, S.

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

Zhuang, X.

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

ACS Nano (1)

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano 4(9), 5332–5338 (2010).
[Crossref] [PubMed]

ACS Photonics (2)

J. K. Hyun, T. Kang, H. Baek, H. Oh, D. Kim, and G. Yi, “Enhanced second harmonic generation by coupling to exciton ensembles in Ag-coated ZnO nanorods,” ACS Photonics 2(9), 1314–1319 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing guided second-harmonic light in lithium niobate nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

Adv. Mater. (2)

S. P. Tai, Y. Wu, D. Shieh, L. Chen, K. Lin, C. Yu, S. Chu, C. Chang, X. Shi, Y. Wen, K. Lin, T. Liu, and C. Sun, “Molecular imaging of cancer cells using plasmon-resonant-enhanced third-harmonic-generation in silver nanoparticles,” Adv. Mater. 19(24), 4520–4523 (2007).
[Crossref]

J. Qian, Z. Zhu, A. Qin, W. Qin, L. Chu, F. Cai, H. Zhang, Q. Wu, R. Hu, B. Z. Tang, and S. He, “High-order non-linear optical effects in organic luminogens with aggregation-induced emission,” Adv. Mater. 27(14), 2332–2339 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

J. Zhou, F. Gu, X. Liu, and J. Qiu, “Enhanced multiphoton upconversion in single nanowires by waveguiding excitation,” Adv. Opt. Mater. 4(8), 1174–1178 (2016).
[Crossref]

F. Liao, Y. Wang, T. Peng, J. Peng, Z. Gu, H. Yu, T. Chen, J. Yu, and F. Gu, “Highly efficient nonlinear optical conversion in waveguiding GaSe nanoribbons with pump pulses down to a femto-joule level,” Adv. Opt. Mater. 6, 1701012 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

D. Vakhshoori, J. Walker, S. Dijaili, S. Wang, and J. S. Smith, “Integrable parametric waveguide spectrometer—a nonlinear optical device capable of resolving modes of semiconductor lasers,” Appl. Phys. Lett. 55(12), 1164–1166 (1989).
[Crossref]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 51110 (2010).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

F. Gu, G. Wu, L. Zhang, and H. Zeng, “Above-bandgap surface-emitting frequency conversion in semiconductor nanoribbons with ultralow continuous-wave pump power,” IEEE J. Sel. Top. Quantum Electron. 21(1), 480–485 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc. 133(7), 2037–2039 (2011).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

G. Xing, S. Chakrabortty, S. W. Ngiam, Y. Chan, and T. C. Sum, “Three-photon absorption in seeded CdSe/CdS nanorod heterostructures,” J. Phys. Chem. C 115(36), 17711–17716 (2011).
[Crossref]

Laser Photonics Rev. (2)

F. Zhou and W. Ji, “Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection,” Laser Photonics Rev. 11(4), 1700021 (2017).
[Crossref]

X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, “Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses,” Laser Photonics Rev. 10(5), 835–842 (2016).
[Crossref]

Light Sci. Appl. (1)

F. Gu, F. Xie, X. Lin, S. Linghu, H. Zeng, L. Tong, and S. Zhuang, “Single whispering-gallery-mode lasing in polymer bottle microresonators via spatial pump engineering,” Light Sci. Appl. 6(10), e17061 (2017).
[Crossref]

Mater. Today (1)

L. Tong and J. X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[Crossref]

Nano Lett. (5)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

C. Xin, S. Yu, Q. Bao, X. Wu, B. Chen, Y. Wang, Y. Xu, Z. Yang, and L. Tong, “Single CdTe nanowire optical correlator for femtojoule pulses,” Nano Lett. 16(8), 4807–4810 (2016).
[Crossref] [PubMed]

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

H. Yu, W. Fang, X. Wu, X. Lin, L. Tong, W. Liu, A. Wang, and Y. R. Shen, “Single nanowire optical correlator,” Nano Lett. 14(6), 3487–3490 (2014).
[Crossref] [PubMed]

R. Grange, G. Brönstrup, M. Kiometzis, A. Sergeyev, J. Richter, C. Leiterer, W. Fritzsche, C. Gutsche, A. Lysov, W. Prost, F. J. Tegude, T. Pertsch, A. Tünnermann, and S. Christiansen, “Far-field imaging for direct visualization of light interferences in GaAs nanowires,” Nano Lett. 12(10), 5412–5417 (2012).
[Crossref] [PubMed]

Nanoscale (1)

F. Gu, L. Zhang, G. Wu, Y. Zhu, and H. Zeng, “Sub-bandgap transverse frequency conversion in semiconductor nano-waveguides,” Nanoscale 6(21), 12371–12375 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

M. L. Ren, W. Liu, C. O. Aspetti, L. Sun, and R. Agarwal, “Enhanced second-harmonic generation from metal-integrated semiconductor nanowires via highly confined whispering gallery modes,” Nat. Commun. 5, 5432 (2014).
[Crossref] [PubMed]

W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, and T. C. Sum, “Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals,” Nat. Commun. 8, 15198 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

C. Monat, B. Corcoran, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

D. Saxena, S. Mokkapati, P. Parkinson, N. Jiang, Q. Gao, H. H. Tan, and C. Jagadish, “Optically pumped room-temperature GaAs nanowire lasers,” Nat. Photonics 7(12), 963–968 (2013).
[Crossref]

Nat. Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[Crossref]

Nat. Rev. Mater. (1)

S. W. Eaton, A. Fu, A. B. Wong, C. Ning, and P. Yang, “Semiconductor nanowire lasers,” Nat. Rev. Mater. 1(6), 16028 (2016).
[Crossref]

Nature (1)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

C. Degen, G. Jennemann, I. Fischer, W. Elsaber, S. Leu, R. Rettig, and W. Stolz, “Surface-emitting second-harmonic generation in AlGaAs/GaAs waveguides,” Opt. Quantum Electron. 34(7), 707–716 (2002).
[Crossref]

Phys. Rev. B (1)

F. Vietmeyer, P. A. Frantsuzov, B. Janko, and M. Kuno, “Carrier recombination dynamics in individual CdSe nanowires,” Phys. Rev. B 83(11), 115319 (2011).
[Crossref]

Phys. Rev. E (1)

M. Centini, G. D’Aguanno, M. Scalora, C. Sibilia, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Simultaneously phase-matched enhanced second and third harmonic generation,” Phys. Rev. E 64(4), 046606 (2001).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Yu, F. Liao, F. Gu, and H. Zeng, “Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire,” Sci. Rep. 6(1), 33181 (2016).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) SEM image of a typical CdSe NWG. (b) Bright-field optical micrograph of a suspended CdSe NWG coupled with a microfiber. (c) Experimental setup for spatial and fiber-coupling excitation and detection of NLO generation from a CdSe NWG. DM: dichroic mirror. WP: half-wave plate. (d) Schematic diagram of generation of transverse THG and MPL signals on the NWG via an evanescent wave coupling technique.
Fig. 2
Fig. 2 (a) Spectrum of detected THG, MPL and SHG from a CdSe NWG excited by spatial light and by coupling excitation. (b) Incident beam power dependences of the THG in logarithmic coordinates and their linear fits. (c) Incident beam power dependences of the MPL in logarithmic coordinates and their linear fits.
Fig. 3
Fig. 3 (a) Polarization dependence of THG signals under spatial excitation. (b) Polarization dependence of MPL under spatial excitation. (c) and (d) Optical micrographs for the star-marked position in (a) and (b), respectively. (e) Polarization dependence of THG and MPL under fiber-coupling excitation. (f) and (g) Optical micrographs of THG polarized at 90° and 0° as marked in green stars in (e). (h) and (i) Optical micrographs of MPL polarized at 45° and 315° as marked in red stars in (f). The emission filters used for THG are FESH0650 and FESH0750, while for MPL are LP03-532RE and FESH0750.
Fig. 4
Fig. 4 Illustration of simplified energy level for a CdSe NWG. G is an electron or hole generation rate by 3-photon absorption; kr is radiative recombination rate constant between free carriers at the band edge; G′ is the generation rate to defect level by one-photon absorption; kD is the second-order rate constant for hole trapping; ND is the defect trap concentration.
Fig. 5
Fig. 5 Optical micrographs of THG (a) and MPL (b) from a 2.1-μm-wide, 100-μm-long CdSe MN-NW via fiber-coupling excitation. Yellow triangles mark the coupling positions. (c) One possible phase-matching condition for the THG process. (d) Spatial intensity of the MPL emission along the axis of the NWG. (e) Simulated power distributions of guided mode along the NWG length direction. Dots line indicates the NWG profile.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

dn dt 0,
dp dt k D N D p,
n 0 G= ( I ex hγ ) 3 σ 3p τ,
p 0 G+G'= ( I ex hγ ) 3 σ 3p τ+ I ex hγ σ D τ,
I em ( t ) k r p( t )n( t ),
I em f 0 I em ( t )dt=f k r n 0 p 0 0 e k D N D t dt = f k r τ 2 hγ [ ( I ex hγ ) 6 σ 3p 2 + ( I ex hγ ) 4 σ 3p σ D ],
I em f 0 I em ( t )dt f k r τ 2 σ 3p σ D ( hγ ) 5 I ex 4 .

Metrics