Abstract

Atmospheric visibility and turbulence are important meteorological factors in light propagation and optical communication, air quality prediction, and climate environment model. They are often measured separately by the conventional instruments, but the interaction between aerosol (closely relate to visibility) and turbulence may potentially influence their measurement accuracy. In this paper, a novel instrument, the atmospheric visibility and turbulence optical meter (AVTOM), is developed to synchronously measure atmospheric visibility and turbulence intensity through a transmission method. The atmospheric visibility is measured by the extinction principle whereas the turbulence intensity is measured by the light intensity flicker principle. We validated the measurement results by comparing them to other two conventional instruments in July 2017, at Nanjing, in southeast China. They agree well with the relative differences of 4.7% for the visibility and 3.5% for the turbulence intensity, respectively. We further demonstrated their dynamic changes under the different weather or aerosol loadings through the synchronous measurements, which may be associated with the aerosol-turbulence-interaction. Finally, we proposed a calibration method and discussed the measurement errors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China

Chenbo Xie, Tomoki Nishizawa, Nobuo Sugimoto, Ichiro Matsui, and Zifa Wang
Appl. Opt. 47(27) 4945-4951 (2008)

Multi-aperture laser transmissometer system for long-path aerosol extinction rate measurement

Chensheng Wu, John R. Rzasa, Jonathan Ko, Daniel A. Paulson, Joseph Coffaro, Jonathan Spychalsky, Robert F. Crabbs, and Christopher C. Davis
Appl. Opt. 57(3) 551-559 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Basahel, I. M. Rafiqul, M. H. Habaebi, and A. Z. Suriza, “Visibility effect on the availability of a terrestrial free space optics link under a tropical climate,” J. Atmos. Sol. Terr. Phys. 143–144, 47–52 (2016).
    [Crossref]
  2. Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
    [Crossref]
  3. J. Zhao, S. Xiao, X. Wu, and X. Zhang, “Parallelism detection of visibility meter’s probe beam and the effect on extinction coefficient measurement,” Optik 128, 34–41 (2017).
    [Crossref]
  4. L. Mei, P. Guan, Y. Yang, and Z. Kong, “Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique,” Opt. Express 25(16), A628–A638 (2017).
    [Crossref] [PubMed]
  5. K. Du, C. Mu, J. J. Deng, and F. Yuan, “Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of Environmental Internet of Things in China,” Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013).
    [Crossref]
  6. J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
    [Crossref]
  7. R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
    [Crossref]
  8. J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).
    [Crossref] [PubMed]
  9. C. Chen, H. Yang, S. Tong, and Y. Lou, “Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence,” Opt. Express 24(7), 6959–6975 (2016).
    [Crossref] [PubMed]
  10. F. O. Ernst and S. E. Pratsinis, “Self-preservation and gelation during turbulence-induced coagulation,” J. Aerosol Sci. 37(2), 123–142 (2006).
    [Crossref]
  11. D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
    [Crossref]
  12. L. Cui, B. Xue, and F. Zhou, “Generalized anisotropic turbulence spectra and applications in the optical waves’ propagation through anisotropic turbulence,” Opt. Express 23(23), 30088–30103 (2015).
    [Crossref] [PubMed]
  13. W. E. K. Middleton, “Vision through the Atmosphere,” in Geophysics II, J. Bartels, ed. (Springer, 1957).
  14. A. H. Thiessen, “Measuring visibility,” Sci. Am. 47(6), 401 (1919).
  15. S. Engel and K. Heyn, “Apparatus and method for measuring atmospheric transmission and determining meteorological visual range” U. S. patent US20020158215 (2005).
  16. T. Wang, G. R. Ochs, and S. F. Clifford, “A saturation-resistant optical scintillometer to measureCn2, ” J. Opt. Soc. Am. 68(3), 334–338 (1978).
    [Crossref]
  17. A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
    [Crossref]
  18. V. A. Mitev, “Remote Sensing Technique for Turbulence Measurements Using Laser Spot Saturated Images,” Can. J. Rem. Sens. 27(5), 538–541 (2001).
    [Crossref]
  19. M. L. Zhou, J. R. Liu, Y. Cai, and D. S. Cheng, “Ultrasonic method for measuring atmospheric refractive-index-structure parameter,” High Power Laser & Particle Beams 17(12), 1783–1786 (2005).
  20. Y. Y. Sun, A. Consortini, and Z. P. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17(1), 1–8 (2007).
    [Crossref]
  21. G. Sun, N. Q. Weng, and L. M. Xiao, “Vertical distribution models of atmospheric structure constant of refractive index,” High Power Laser & Particle Beams 20(2), 183–188 (2008).
  22. E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
    [Crossref] [PubMed]
  23. N. Anand, S. K. Satheesh, and K. Krishna Moorthy, “Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols,” Opt. Lett. 42(14), 2714–2717 (2017).
    [Crossref] [PubMed]
  24. D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
    [Crossref]
  25. H. J. Pfeifer, M. König, and B. Koch, “Effects of atmospheric turbulence on the visibility and spacing of interference fringes,” J. Opt. Soc. Am. 70(2), 163–167 (1980).
    [Crossref]
  26. C. M. William and P. Gerald, “Considerations in the Accuracy of a Long-Path Transmissometer,” Aerosol Sci. Technol. 14(4), 459–471 (1991).
    [Crossref]
  27. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press & Oxford University Press, 1997)
  28. R. Z. Rao, “Light Propagation in the Turbulent Atmosphere (Anhui Science & Technology Press, 2005), pp. 180–183.
  29. M. Eric, Wilcox, Rick M. Thomas, Puppala S. Praveen, Kristina Pistone, Frida A.-M. Bender, Veerabhadran Ramanathan, Black carbon suppresses atmospheric turbulence, Proceedings of the National Academy of Sciences Oct, 113 (42) 11794–11799; DOI: (2016)
    [Crossref]
  30. Y. Ma, “High-Precision Apparatus for Visibility and Present Weather by British BIRAL HSS”. Meteorological Hydrological & Marine Instrument, 02 (2005).
  31. W. M. Organization, “Guide of Meteorological Instruments and Methods of Observation,” Eos Transactions 55, 8–9 (2008).
  32. R. Sabatini and M. Richardson, “Novel atmospheric extinction measurement techniques for aerospace laser system applications,” Infrared Phys. Technol. 56(56), 30–50 (2013).
    [Crossref]
  33. N. W. Cao, “New Lidar technology for aerosol measurements and extinctioncoefficient inversion,” Int. J. Light Electron Opt. 126(21), 3053–3057 (2015).
    [Crossref]
  34. C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).
  35. X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Annular-aperture averaging factor of optical scintillations in turbulent atmosphere,” Acta Opt. Sin. 27(9), 1543–1547 (2007).
  36. X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Large Aperture Laser Scintillometer for Measuring the Refractive Index Structure Constant of Atmospheric Turbulence,” Chin. J. Lasers 35(6), 898–902 (2008).
    [Crossref]
  37. G. Sun, N. Q. Weng, L. M. Xiao, and C. S. Ma, “Profile and Character of Atmospheric Structure Constants of Refractive Index,” High Power Laser Particle Beams 17(4), 485–490 (2005).
  38. T. C. Bond, T. L. Anderson, and D. Campbell, “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols,” Aerosol Sci. Technol. 30(6), 582–600 (1999).
    [Crossref]

2017 (4)

J. Zhao, S. Xiao, X. Wu, and X. Zhang, “Parallelism detection of visibility meter’s probe beam and the effect on extinction coefficient measurement,” Optik 128, 34–41 (2017).
[Crossref]

L. Mei, P. Guan, Y. Yang, and Z. Kong, “Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique,” Opt. Express 25(16), A628–A638 (2017).
[Crossref] [PubMed]

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

N. Anand, S. K. Satheesh, and K. Krishna Moorthy, “Dependence of atmospheric refractive index structure parameter (Cn2) on the residence time and vertical distribution of aerosols,” Opt. Lett. 42(14), 2714–2717 (2017).
[Crossref] [PubMed]

2016 (4)

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).
[Crossref] [PubMed]

C. Chen, H. Yang, S. Tong, and Y. Lou, “Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence,” Opt. Express 24(7), 6959–6975 (2016).
[Crossref] [PubMed]

A. Basahel, I. M. Rafiqul, M. H. Habaebi, and A. Z. Suriza, “Visibility effect on the availability of a terrestrial free space optics link under a tropical climate,” J. Atmos. Sol. Terr. Phys. 143–144, 47–52 (2016).
[Crossref]

2015 (3)

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
[Crossref]

L. Cui, B. Xue, and F. Zhou, “Generalized anisotropic turbulence spectra and applications in the optical waves’ propagation through anisotropic turbulence,” Opt. Express 23(23), 30088–30103 (2015).
[Crossref] [PubMed]

N. W. Cao, “New Lidar technology for aerosol measurements and extinctioncoefficient inversion,” Int. J. Light Electron Opt. 126(21), 3053–3057 (2015).
[Crossref]

2014 (2)

D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
[Crossref]

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

2013 (3)

K. Du, C. Mu, J. J. Deng, and F. Yuan, “Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of Environmental Internet of Things in China,” Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013).
[Crossref]

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

R. Sabatini and M. Richardson, “Novel atmospheric extinction measurement techniques for aerospace laser system applications,” Infrared Phys. Technol. 56(56), 30–50 (2013).
[Crossref]

2008 (3)

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Large Aperture Laser Scintillometer for Measuring the Refractive Index Structure Constant of Atmospheric Turbulence,” Chin. J. Lasers 35(6), 898–902 (2008).
[Crossref]

G. Sun, N. Q. Weng, and L. M. Xiao, “Vertical distribution models of atmospheric structure constant of refractive index,” High Power Laser & Particle Beams 20(2), 183–188 (2008).

W. M. Organization, “Guide of Meteorological Instruments and Methods of Observation,” Eos Transactions 55, 8–9 (2008).

2007 (2)

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Annular-aperture averaging factor of optical scintillations in turbulent atmosphere,” Acta Opt. Sin. 27(9), 1543–1547 (2007).

Y. Y. Sun, A. Consortini, and Z. P. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17(1), 1–8 (2007).
[Crossref]

2006 (1)

F. O. Ernst and S. E. Pratsinis, “Self-preservation and gelation during turbulence-induced coagulation,” J. Aerosol Sci. 37(2), 123–142 (2006).
[Crossref]

2005 (3)

M. L. Zhou, J. R. Liu, Y. Cai, and D. S. Cheng, “Ultrasonic method for measuring atmospheric refractive-index-structure parameter,” High Power Laser & Particle Beams 17(12), 1783–1786 (2005).

G. Sun, N. Q. Weng, L. M. Xiao, and C. S. Ma, “Profile and Character of Atmospheric Structure Constants of Refractive Index,” High Power Laser Particle Beams 17(4), 485–490 (2005).

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

2001 (1)

V. A. Mitev, “Remote Sensing Technique for Turbulence Measurements Using Laser Spot Saturated Images,” Can. J. Rem. Sens. 27(5), 538–541 (2001).
[Crossref]

1999 (2)

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

T. C. Bond, T. L. Anderson, and D. Campbell, “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols,” Aerosol Sci. Technol. 30(6), 582–600 (1999).
[Crossref]

1991 (1)

C. M. William and P. Gerald, “Considerations in the Accuracy of a Long-Path Transmissometer,” Aerosol Sci. Technol. 14(4), 459–471 (1991).
[Crossref]

1980 (1)

1978 (1)

1919 (1)

A. H. Thiessen, “Measuring visibility,” Sci. Am. 47(6), 401 (1919).

Anand, N.

Anderson, T. L.

T. C. Bond, T. L. Anderson, and D. Campbell, “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols,” Aerosol Sci. Technol. 30(6), 582–600 (1999).
[Crossref]

Basahel, A.

A. Basahel, I. M. Rafiqul, M. H. Habaebi, and A. Z. Suriza, “Visibility effect on the availability of a terrestrial free space optics link under a tropical climate,” J. Atmos. Sol. Terr. Phys. 143–144, 47–52 (2016).
[Crossref]

Bauer, S.

D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
[Crossref]

Bender, F. A.

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

Bond, T. C.

T. C. Bond, T. L. Anderson, and D. Campbell, “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols,” Aerosol Sci. Technol. 30(6), 582–600 (1999).
[Crossref]

Cai, Y.

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
[Crossref]

M. L. Zhou, J. R. Liu, Y. Cai, and D. S. Cheng, “Ultrasonic method for measuring atmospheric refractive-index-structure parameter,” High Power Laser & Particle Beams 17(12), 1783–1786 (2005).

Campbell, D.

T. C. Bond, T. L. Anderson, and D. Campbell, “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols,” Aerosol Sci. Technol. 30(6), 582–600 (1999).
[Crossref]

Cao, N. W.

N. W. Cao, “New Lidar technology for aerosol measurements and extinctioncoefficient inversion,” Int. J. Light Electron Opt. 126(21), 3053–3057 (2015).
[Crossref]

Chen, C.

Cheng, D. S.

M. L. Zhou, J. R. Liu, Y. Cai, and D. S. Cheng, “Ultrasonic method for measuring atmospheric refractive-index-structure parameter,” High Power Laser & Particle Beams 17(12), 1783–1786 (2005).

Clifford, S. F.

Cohn, S. A.

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Consortini, A.

Y. Y. Sun, A. Consortini, and Z. P. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17(1), 1–8 (2007).
[Crossref]

Cribb, M.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Cui, L.

Cui, Y.

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
[Crossref]

Deng, J. J.

K. Du, C. Mu, J. J. Deng, and F. Yuan, “Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of Environmental Internet of Things in China,” Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013).
[Crossref]

Deng, K.

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

Dirkx, D.

D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
[Crossref]

Doviak, R. J.

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Du, K.

K. Du, C. Mu, J. J. Deng, and F. Yuan, “Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of Environmental Internet of Things in China,” Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013).
[Crossref]

Duan, M.

Eric, M.

M. Eric, Wilcox, Rick M. Thomas, Puppala S. Praveen, Kristina Pistone, Frida A.-M. Bender, Veerabhadran Ramanathan, Black carbon suppresses atmospheric turbulence, Proceedings of the National Academy of Sciences Oct, 113 (42) 11794–11799; DOI: (2016)
[Crossref]

Ernst, F. O.

F. O. Ernst and S. E. Pratsinis, “Self-preservation and gelation during turbulence-induced coagulation,” J. Aerosol Sci. 37(2), 123–142 (2006).
[Crossref]

Fan, A. Y.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Fu, Y.

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

Ge, C.

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

Gerald, P.

C. M. William and P. Gerald, “Considerations in the Accuracy of a Long-Path Transmissometer,” Aerosol Sci. Technol. 14(4), 459–471 (1991).
[Crossref]

Guan, P.

Guo, J.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Habaebi, M. H.

A. Basahel, I. M. Rafiqul, M. H. Habaebi, and A. Z. Suriza, “Visibility effect on the availability of a terrestrial free space optics link under a tropical climate,” J. Atmos. Sol. Terr. Phys. 143–144, 47–52 (2016).
[Crossref]

Han, Y.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Hill, R. J.

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Hou, J.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Jiang, D. G.

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

Koch, B.

Kong, Z.

König, M.

Krishna Moorthy, K.

Lenschow, D. H.

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Li, C.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Li, J.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).
[Crossref] [PubMed]

Li, X.

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

Li, Z.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Li, Z. P.

Y. Y. Sun, A. Consortini, and Z. P. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17(1), 1–8 (2007).
[Crossref]

Liu, H.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Liu, J. R.

M. L. Zhou, J. R. Liu, Y. Cai, and D. S. Cheng, “Ultrasonic method for measuring atmospheric refractive-index-structure parameter,” High Power Laser & Particle Beams 17(12), 1783–1786 (2005).

Lou, Y.

Luo, T.

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

Ma, C. S.

G. Sun, N. Q. Weng, L. M. Xiao, and C. S. Ma, “Profile and Character of Atmospheric Structure Constants of Refractive Index,” High Power Laser Particle Beams 17(4), 485–490 (2005).

Ma, X. S.

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Large Aperture Laser Scintillometer for Measuring the Refractive Index Structure Constant of Atmospheric Turbulence,” Chin. J. Lasers 35(6), 898–902 (2008).
[Crossref]

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Annular-aperture averaging factor of optical scintillations in turbulent atmosphere,” Acta Opt. Sin. 27(9), 1543–1547 (2007).

Mei, L.

Miao, Y.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Mitev, V. A.

V. A. Mitev, “Remote Sensing Technique for Turbulence Measurements Using Laser Spot Saturated Images,” Can. J. Rem. Sens. 27(5), 538–541 (2001).
[Crossref]

Mu, C.

K. Du, C. Mu, J. J. Deng, and F. Yuan, “Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of Environmental Internet of Things in China,” Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013).
[Crossref]

Muschinski, A.

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Noomen, R.

D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
[Crossref]

Ochs, G. R.

Organization, W. M.

W. M. Organization, “Guide of Meteorological Instruments and Methods of Observation,” Eos Transactions 55, 8–9 (2008).

Pfeifer, H. J.

Pistone, K.

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

Pratsinis, S. E.

F. O. Ernst and S. E. Pratsinis, “Self-preservation and gelation during turbulence-induced coagulation,” J. Aerosol Sci. 37(2), 123–142 (2006).
[Crossref]

Praveen, P. S.

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

Prochazka, I.

D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
[Crossref]

Qi, F. D.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Qin, K.

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

Rafiqul, I. M.

A. Basahel, I. M. Rafiqul, M. H. Habaebi, and A. Z. Suriza, “Visibility effect on the availability of a terrestrial free space optics link under a tropical climate,” J. Atmos. Sol. Terr. Phys. 143–144, 47–52 (2016).
[Crossref]

Ramanathan, V.

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

Rao, R. Z.

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Large Aperture Laser Scintillometer for Measuring the Refractive Index Structure Constant of Atmospheric Turbulence,” Chin. J. Lasers 35(6), 898–902 (2008).
[Crossref]

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Annular-aperture averaging factor of optical scintillations in turbulent atmosphere,” Acta Opt. Sin. 27(9), 1543–1547 (2007).

Richardson, M.

R. Sabatini and M. Richardson, “Novel atmospheric extinction measurement techniques for aerospace laser system applications,” Infrared Phys. Technol. 56(56), 30–50 (2013).
[Crossref]

Sabatini, R.

R. Sabatini and M. Richardson, “Novel atmospheric extinction measurement techniques for aerospace laser system applications,” Infrared Phys. Technol. 56(56), 30–50 (2013).
[Crossref]

Satheesh, S. K.

Su, T.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Sullivan, P. P.

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Sun, G.

G. Sun, N. Q. Weng, and L. M. Xiao, “Vertical distribution models of atmospheric structure constant of refractive index,” High Power Laser & Particle Beams 20(2), 183–188 (2008).

G. Sun, N. Q. Weng, L. M. Xiao, and C. S. Ma, “Profile and Character of Atmospheric Structure Constants of Refractive Index,” High Power Laser Particle Beams 17(4), 485–490 (2005).

Sun, J.

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

Sun, Y. Y.

Y. Y. Sun, A. Consortini, and Z. P. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17(1), 1–8 (2007).
[Crossref]

Suriza, A. Z.

A. Basahel, I. M. Rafiqul, M. H. Habaebi, and A. Z. Suriza, “Visibility effect on the availability of a terrestrial free space optics link under a tropical climate,” J. Atmos. Sol. Terr. Phys. 143–144, 47–52 (2016).
[Crossref]

Thiessen, A. H.

A. H. Thiessen, “Measuring visibility,” Sci. Am. 47(6), 401 (1919).

Thomas, R. M.

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

Tong, S.

Vermeersen, L. L. A.

D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
[Crossref]

Wang, F.

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
[Crossref]

Wang, T.

Wang, W.

Wei, C.

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
[Crossref]

Wei, J.

Weng, N. Q.

G. Sun, N. Q. Weng, and L. M. Xiao, “Vertical distribution models of atmospheric structure constant of refractive index,” High Power Laser & Particle Beams 20(2), 183–188 (2008).

G. Sun, N. Q. Weng, L. M. Xiao, and C. S. Ma, “Profile and Character of Atmospheric Structure Constants of Refractive Index,” High Power Laser Particle Beams 17(4), 485–490 (2005).

Wilcox, E. M.

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

William, C. M.

C. M. William and P. Gerald, “Considerations in the Accuracy of a Long-Path Transmissometer,” Aerosol Sci. Technol. 14(4), 459–471 (1991).
[Crossref]

Wu, X.

J. Zhao, S. Xiao, X. Wu, and X. Zhang, “Parallelism detection of visibility meter’s probe beam and the effect on extinction coefficient measurement,” Optik 128, 34–41 (2017).
[Crossref]

Wuertz, D. B.

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Xiao, L. M.

G. Sun, N. Q. Weng, and L. M. Xiao, “Vertical distribution models of atmospheric structure constant of refractive index,” High Power Laser & Particle Beams 20(2), 183–188 (2008).

G. Sun, N. Q. Weng, L. M. Xiao, and C. S. Ma, “Profile and Character of Atmospheric Structure Constants of Refractive Index,” High Power Laser Particle Beams 17(4), 485–490 (2005).

Xiao, S.

J. Zhao, S. Xiao, X. Wu, and X. Zhang, “Parallelism detection of visibility meter’s probe beam and the effect on extinction coefficient measurement,” Optik 128, 34–41 (2017).
[Crossref]

Xie, C. B.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Xu, H.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Xue, B.

Yang, H.

Yang, Y.

Yao, Z.

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

Yin, J.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Yuan, F.

K. Du, C. Mu, J. J. Deng, and F. Yuan, “Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of Environmental Internet of Things in China,” Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013).
[Crossref]

Yuan, R.

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

Yuan, S.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Yue, G. M.

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

Zeng, Z.

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

Zhai, P.

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

Zhang, P.

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

Zhang, X.

J. Zhao, S. Xiao, X. Wu, and X. Zhang, “Parallelism detection of visibility meter’s probe beam and the effect on extinction coefficient measurement,” Optik 128, 34–41 (2017).
[Crossref]

Zhang, Y.

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
[Crossref]

Zhao, J.

J. Zhao, S. Xiao, X. Wu, and X. Zhang, “Parallelism detection of visibility meter’s probe beam and the effect on extinction coefficient measurement,” Optik 128, 34–41 (2017).
[Crossref]

Zhou, F.

Zhou, M. L.

M. L. Zhou, J. R. Liu, Y. Cai, and D. S. Cheng, “Ultrasonic method for measuring atmospheric refractive-index-structure parameter,” High Power Laser & Particle Beams 17(12), 1783–1786 (2005).

Zhu, W. Y.

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Large Aperture Laser Scintillometer for Measuring the Refractive Index Structure Constant of Atmospheric Turbulence,” Chin. J. Lasers 35(6), 898–902 (2008).
[Crossref]

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Annular-aperture averaging factor of optical scintillations in turbulent atmosphere,” Acta Opt. Sin. 27(9), 1543–1547 (2007).

Acta Opt. Sin. (1)

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Annular-aperture averaging factor of optical scintillations in turbulent atmosphere,” Acta Opt. Sin. 27(9), 1543–1547 (2007).

Adv. Space Res. (1)

D. Dirkx, R. Noomen, I. Prochazka, S. Bauer, and L. L. A. Vermeersen, “Influence of atmospheric turbulence on planetary transceiver laser ranging,” Adv. Space Res. 54(11), 2349–2370 (2014).
[Crossref]

Aerosol Sci. Technol. (2)

T. C. Bond, T. L. Anderson, and D. Campbell, “Calibration and Intercomparison of Filter-Based Measurements of Visible Light Absorption by Aerosols,” Aerosol Sci. Technol. 30(6), 582–600 (1999).
[Crossref]

C. M. William and P. Gerald, “Considerations in the Accuracy of a Long-Path Transmissometer,” Aerosol Sci. Technol. 14(4), 459–471 (1991).
[Crossref]

Atmos. Chem. Phys. (1)

R. Yuan, T. Luo, J. Sun, Z. Zeng, C. Ge, and Y. Fu, “A new method for measuring the imaginary part of the atmospheric refractive index structure parameter in the urban surface layer,” Atmos. Chem. Phys. 14(15), 21285–21314 (2014).
[Crossref]

Can. J. Rem. Sens. (1)

V. A. Mitev, “Remote Sensing Technique for Turbulence Measurements Using Laser Spot Saturated Images,” Can. J. Rem. Sens. 27(5), 538–541 (2001).
[Crossref]

Chin. J. Lasers (1)

X. S. Ma, W. Y. Zhu, and R. Z. Rao, “Large Aperture Laser Scintillometer for Measuring the Refractive Index Structure Constant of Atmospheric Turbulence,” Chin. J. Lasers 35(6), 898–902 (2008).
[Crossref]

Eos Transactions (1)

W. M. Organization, “Guide of Meteorological Instruments and Methods of Observation,” Eos Transactions 55, 8–9 (2008).

Geophys. Res. Lett. (1)

J. Guo, T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, “Declining frequency of summertime local-scale precipitation over eastern China from 1970–2010 and its potential link to aerosols,” Geophys. Res. Lett. 44(11), 5700–5708 (2017).
[Crossref]

High Power Laser & Particle Beams (2)

M. L. Zhou, J. R. Liu, Y. Cai, and D. S. Cheng, “Ultrasonic method for measuring atmospheric refractive-index-structure parameter,” High Power Laser & Particle Beams 17(12), 1783–1786 (2005).

G. Sun, N. Q. Weng, and L. M. Xiao, “Vertical distribution models of atmospheric structure constant of refractive index,” High Power Laser & Particle Beams 20(2), 183–188 (2008).

High Power Laser Particle Beams (2)

C. B. Xie, Y. Han, C. Li, G. M. Yue, F. D. Qi, A. Y. Fan, J. Yin, S. Yuan, and J. Hou, “Mobile lidar for visibility measurement,” High Power Laser Particle Beams 17(7), 971–975 (2005).

G. Sun, N. Q. Weng, L. M. Xiao, and C. S. Ma, “Profile and Character of Atmospheric Structure Constants of Refractive Index,” High Power Laser Particle Beams 17(4), 485–490 (2005).

Infrared Phys. Technol. (1)

R. Sabatini and M. Richardson, “Novel atmospheric extinction measurement techniques for aerospace laser system applications,” Infrared Phys. Technol. 56(56), 30–50 (2013).
[Crossref]

Int. J. Light Electron Opt. (1)

N. W. Cao, “New Lidar technology for aerosol measurements and extinctioncoefficient inversion,” Int. J. Light Electron Opt. 126(21), 3053–3057 (2015).
[Crossref]

Int. J. Sustain. Dev. World Ecol. (1)

K. Du, C. Mu, J. J. Deng, and F. Yuan, “Study on atmospheric visibility variations and the impacts of meteorological parameters using high temporal resolution data: an application of Environmental Internet of Things in China,” Int. J. Sustain. Dev. World Ecol. 20(3), 238–247 (2013).
[Crossref]

J. Aerosol Sci. (1)

F. O. Ernst and S. E. Pratsinis, “Self-preservation and gelation during turbulence-induced coagulation,” J. Aerosol Sci. 37(2), 123–142 (2006).
[Crossref]

J. Atmos. Sol. Terr. Phys. (1)

A. Basahel, I. M. Rafiqul, M. H. Habaebi, and A. Z. Suriza, “Visibility effect on the availability of a terrestrial free space optics link under a tropical climate,” J. Atmos. Sol. Terr. Phys. 143–144, 47–52 (2016).
[Crossref]

J. Opt. Soc. Am. (2)

Opt. Commun. (2)

D. G. Jiang, K. Deng, P. Zhang, Z. Yao, X. Li, and K. Qin, “A synchronous measurement technique for the evaluation of atmospheric extinction coefficient and refractive index structure constant,” Opt. Commun. 311(2), 288–293 (2013).
[Crossref]

Y. Cui, C. Wei, Y. Zhang, F. Wang, and Y. Cai, “Effect of the atmospheric turbulence on a special correlated radially polari,” Opt. Commun. 354, 353–361 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optik (1)

J. Zhao, S. Xiao, X. Wu, and X. Zhang, “Parallelism detection of visibility meter’s probe beam and the effect on extinction coefficient measurement,” Optik 128, 34–41 (2017).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

E. M. Wilcox, R. M. Thomas, P. S. Praveen, K. Pistone, F. A. Bender, and V. Ramanathan, “Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer,” Proc. Natl. Acad. Sci. U.S.A. 113(42), 11794–11799 (2016).
[Crossref] [PubMed]

Radio Sci. (1)

A. Muschinski, P. P. Sullivan, D. B. Wuertz, R. J. Hill, S. A. Cohn, D. H. Lenschow, and R. J. Doviak, “First synthesis of wind profiler signals on the basis of Large-Eddy Simulation data,” Radio Sci. 34(6), 1437–1459 (1999).
[Crossref]

Sci. Am. (1)

A. H. Thiessen, “Measuring visibility,” Sci. Am. 47(6), 401 (1919).

Waves Random Complex Media (1)

Y. Y. Sun, A. Consortini, and Z. P. Li, “A new method for measuring the outer scale of atmospheric turbulence,” Waves Random Complex Media 17(1), 1–8 (2007).
[Crossref]

Other (6)

S. Engel and K. Heyn, “Apparatus and method for measuring atmospheric transmission and determining meteorological visual range” U. S. patent US20020158215 (2005).

W. E. K. Middleton, “Vision through the Atmosphere,” in Geophysics II, J. Bartels, ed. (Springer, 1957).

A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press & Oxford University Press, 1997)

R. Z. Rao, “Light Propagation in the Turbulent Atmosphere (Anhui Science & Technology Press, 2005), pp. 180–183.

M. Eric, Wilcox, Rick M. Thomas, Puppala S. Praveen, Kristina Pistone, Frida A.-M. Bender, Veerabhadran Ramanathan, Black carbon suppresses atmospheric turbulence, Proceedings of the National Academy of Sciences Oct, 113 (42) 11794–11799; DOI: (2016)
[Crossref]

Y. Ma, “High-Precision Apparatus for Visibility and Present Weather by British BIRAL HSS”. Meteorological Hydrological & Marine Instrument, 02 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The experiment image of the influence between aerosol particles and atmospheric turbulence (From Prof. Dr. Ruizhong Rao, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science).
Fig. 2
Fig. 2 Schematic diagram of the AVTOM.
Fig. 3
Fig. 3 The schematic diagram of transmitting module (a), Schematic diagram of receiving module (b), and the AVTOM (c), respectively.
Fig. 4
Fig. 4 The photos are (a) Field experiment and (b) Laboratory calibration experiment, respectively.
Fig. 5
Fig. 5 The comparison of three design patterns for instrument transmitter, and (a) single lens collimation optical path, (b) single lens collimation spot, (c) Double lens collimation optical path, (d) Double lens collimation spot, (e) Double glued lens collimation optical path, and (f) Double glued lens collimation spot, respectively. RMS RADIUS (μm) means dispersion radius, and GEO RADIUS (μm) (geometric radius) represents the actual geometric radius, respectively.
Fig. 6
Fig. 6 The location information of the AVTOM (32.117° N, 118.954° E), OSi OWI-430 (32.117° N, 118.952° E) and CAST3A (32.118° N, 118.957° E)
Fig. 7
Fig. 7 Original voltage signal (a) and Measurement results (b) of the AVTOM on Jul. 27th, 2017. The red and blue lines represent the measurement results of the visibility and C n 2 , respectively.
Fig. 8
Fig. 8 The results from comparison between the AVTOM and OSi OWI-430(a) visibility meter, CAST3A ultrasonic anemometer (b). The red and blue lines represent the measurement results of the existing instrument and the AVTOM, respectively.
Fig. 9
Fig. 9 Measurement results of the AVTOM on Jul. 20th, 2017 (a) and on Jul. 25th, 2017(b). The red and blue lines represent the measurement results of the visibility and C n 2 , respectively. AQI is Air Quality Index and Sd is Standard Deviation.
Fig. 10
Fig. 10 Working flow chart of AVTOM.
Fig. 11
Fig. 11 The visibility measured at the gear 1(a), gear 2(b) and gear 3(c), respectively.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

MOR= lnε σ = ln0.05 σ
P=k P 0 D 2 4 L 2 ( tanθ ) 2 exp( σL )
P=k P 0 D 2 4 L 2 θ 2 exp( σL )
σ= 1 2L lnβT
σ lnI 2 ( D )=4× ( 2πk ) 2 × 0 L dz 0 sin 2 [ γ( Lz ) 2k K 2 ] ϕ n ( K )KF( γK )dK
ϕ n ( K )=0.033 C n 2 ( z ) K 11/3 f( K l 0 )
F( K )= [ 2 1 ε 2 ] 2 [ J 1 ( KD/2 ) KD/2 ε 2 J 1 ( εKD/2 ) εKD/2 ] 2
β I 2 = I 2 I 2 I 2
β I 2 ( D )=0.132× ( 2πk ) 2 × 0 L C n 2 ( z )dz 0 sin 2 [ γ( Lz ) 2kL K 2 ] K 8/3 × [ 2 1 ε 2 ] 2 [ J 1 ( zKD/2L ) zKD/2L ε 2 J 1 ( εzKD/2L ) εzKD/2L ] 2 dK
C n 2 = β I 2 ( D ) 0.496 k 7/6 L 11/6 × [ 1+0.214 ( k D 2 /4L ) 7/6 ] 1 ×[ 0.44exp( L/1079.23 )+0.5 ]
dMOR MOR = dT TlnT
T=exp( ln0.05 k )
dMOR MOR = dT ln0.05 k exp( ln0.05 k )
Δ =( M1M0 )/ M0<±a%
ΔM= 1 ( 1+ 1 Δ ) M0 M 1

Metrics