Abstract

Digital-to-analog converters (DACs) for high-speed optical communication systems based on CMOS technology have bandwidths lower than nowadays electro-optic components. A promising concept to circumvent this bottleneck is the frequency-interleaved DAC (FI-DAC) concept. In this paper, experimental results for the application of a 180 GS/s FI-DAC with 40 GHz analog bandwidth based on two DACs in a high-speed optical link are discussed and compared with simulation results. Thereby, phase and power mismatches, spectral overlap, clipping and the required DAC resolution are investigated. Signal-to-noise ratio (SNR) estimations based on a discrete multi-tone (DMT) signal show the influence of the individual analog components on the signal quality.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of null-subcarriers reservation and adaptive notch filter for narrowband interference cancellation in intra-data center interconnect with DMT signal transmission

Dongdong Zou, Yongchao Chen, Zibin Li, Fan Li, Li Ding, Yidan Sun, Jianping Li, Qi Sui, Xingwen Yi, and Zhaohui Li
Opt. Express 27(4) 5696-5702 (2019)

Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters

Yangxue Ma, Dong Liang, Di Peng, Zhiyao Zhang, Yali Zhang, Shangjian Zhang, and Yong Liu
Opt. Express 25(3) 2355-2368 (2017)

Online digital offset mismatch compensation for high-speed time-interleaved ADC in real-time optical OFDM receiver

Ming Chen, Gang Liu, Long Zhang, Hui Zhou, and QingHui Chen
Opt. Express 27(12) 16650-16660 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2016–2021,” White Paper (2017).
  2. J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  3. C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
    [Crossref]
  4. S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
    [Crossref]
  5. Socionext, “100g to 400g adc and dac for ultra-high-speed optical networks,” http://socionextus.com/products/networking-asic/adc-dac/ (2016).
  6. C. Laperle and M. O’Sullivan, “Advances in high-speed DACs, ADCs, and DSP for optical coherent transceivers,” J. Lightwave Technol. 32(4), 629–643 (2014).
    [Crossref]
  7. C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “High-speed digital-to-analog converter concepts,” in Proceedings of SPIE Photonics West (2017), 10130.
  8. X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2017).
    [Crossref]
  9. M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
    [Crossref]
  10. H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
    [Crossref]
  11. H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).
  12. T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
    [Crossref]
  13. C. Laperle and M. O’Sullivan, “Advances in high-speed dacs, adcs, and dsp for optical coherent transceivers,” J. Lightwave Technol. 32(4), 629–643 (2014).
    [Crossref]
  14. X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-ghz bandwidth digital-to-analog converter generating pam signals up to 190 gbaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
    [Crossref]
  15. C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “Enhancing the bandwidth of dacs by analog bandwidth interleaving,” in Proceedings of the 10th ITG-Symposium Broadband Coverage in Germany, VDE (2016).
  16. C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
    [Crossref]
  17. C. Kottke, K. Habel, C. Schmidt, and V. Jungnickel, “154.9 gb/s ofdm transmission using im-dd, electrical iq-mixing and signal combining,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2016).
    [Crossref]
  18. C. Kottke, C. Schmidt, K. Habel, and V. Jungnickel, “178 gb/s shortrange optical transmission based on ofdm, electrical up-conversion and signal combining,” in Proceedings of the European Conference on Optical Communication (ECOC), (2016).
  19. C. Kottke, C. Schmidt, K. Habel, V. Jungnickel, and R. Freund, “Performance of Single-and Multi-Carrier Modulation with Additional Spectral Up-conversion for Wideband IM/DD Transmission,” in Proc. 18. ITG-Symposium on Photonic Networks, VDE, (2017).
  20. C. Schmidt, C. Kottke, R. Freund, and V. Jungnickel, “Bandwidth Enhancement for an Optical Access Link by using a Frequency Interleaved DAC,” in Proc. Optical Fiber Communication Conference, Optical Society of America (2018, accepted, not yet published).
  21. G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
    [Crossref]

2017 (1)

2016 (2)

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

2015 (1)

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

2014 (2)

2013 (1)

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Adamiecki, A.

Altenhain, L.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Berroth, M.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Caspar, C.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Chandrasekhar, S.

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-ghz bandwidth digital-to-analog converter generating pam signals up to 190 gbaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
[Crossref]

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Chen, X.

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-ghz bandwidth digital-to-analog converter generating pam signals up to 190 gbaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
[Crossref]

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Cheng, Q.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Choi, J. H.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Cole, C.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Cunningham, D. G.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Cvijetic, M.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Djordjevic, I. B.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Du, X. Q.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Freund, R.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
[Crossref]

C. Schmidt, C. Kottke, R. Freund, and V. Jungnickel, “Bandwidth Enhancement for an Optical Access Link by using a Frequency Interleaved DAC,” in Proc. Optical Fiber Communication Conference, Optical Society of America (2018, accepted, not yet published).

C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “High-speed digital-to-analog converter concepts,” in Proceedings of SPIE Photonics West (2017), 10130.

Ghiasi, A.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Grözing, M.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Habel, K.

C. Kottke, K. Habel, C. Schmidt, and V. Jungnickel, “154.9 gb/s ofdm transmission using im-dd, electrical iq-mixing and signal combining,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2016).
[Crossref]

C. Kottke, C. Schmidt, K. Habel, and V. Jungnickel, “178 gb/s shortrange optical transmission based on ofdm, electrical up-conversion and signal combining,” in Proceedings of the European Conference on Optical Communication (ECOC), (2016).

Hamaoka, F.

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

Hashimoto, T.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

Ida, M.

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

Jungnickel, V.

C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “High-speed digital-to-analog converter concepts,” in Proceedings of SPIE Photonics West (2017), 10130.

C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
[Crossref]

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

C. Kottke, C. Schmidt, K. Habel, and V. Jungnickel, “178 gb/s shortrange optical transmission based on ofdm, electrical up-conversion and signal combining,” in Proceedings of the European Conference on Optical Communication (ECOC), (2016).

C. Kottke, K. Habel, C. Schmidt, and V. Jungnickel, “154.9 gb/s ofdm transmission using im-dd, electrical iq-mixing and signal combining,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2016).
[Crossref]

C. Schmidt, C. Kottke, R. Freund, and V. Jungnickel, “Bandwidth Enhancement for an Optical Access Link by using a Frequency Interleaved DAC,” in Proc. Optical Fiber Communication Conference, Optical Society of America (2018, accepted, not yet published).

Kachris, C.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Kaiser, R.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Kanazawa, S.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

Koos, C.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Kottke, C.

C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “High-speed digital-to-analog converter concepts,” in Proceedings of SPIE Photonics West (2017), 10130.

C. Kottke, K. Habel, C. Schmidt, and V. Jungnickel, “154.9 gb/s ofdm transmission using im-dd, electrical iq-mixing and signal combining,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2016).
[Crossref]

C. Kottke, C. Schmidt, K. Habel, and V. Jungnickel, “178 gb/s shortrange optical transmission based on ofdm, electrical up-conversion and signal combining,” in Proceedings of the European Conference on Optical Communication (ECOC), (2016).

C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
[Crossref]

C. Schmidt, C. Kottke, R. Freund, and V. Jungnickel, “Bandwidth Enhancement for an Optical Access Link by using a Frequency Interleaved DAC,” in Proc. Optical Fiber Communication Conference, Optical Society of America (2018, accepted, not yet published).

Kurishima, K.

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

Lange, S.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Laperle, C.

Lutz, J.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Lyubomirsky, I.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Miyamoto, Y.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

Nagatani, M.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

Nosaka, H.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

O’Sullivan, M.

Penty, R. V.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Pupalaikis, P.

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-ghz bandwidth digital-to-analog converter generating pam signals up to 190 gbaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
[Crossref]

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Randel, S.

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-ghz bandwidth digital-to-analog converter generating pam signals up to 190 gbaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
[Crossref]

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Raybon, G.

Sano, A.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

Schell, M.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Schmid, R.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Schmidt, C.

C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “High-speed digital-to-analog converter concepts,” in Proceedings of SPIE Photonics West (2017), 10130.

C. Schmidt, C. Kottke, R. Freund, and V. Jungnickel, “Bandwidth Enhancement for an Optical Access Link by using a Frequency Interleaved DAC,” in Proc. Optical Fiber Communication Conference, Optical Society of America (2018, accepted, not yet published).

C. Kottke, C. Schmidt, K. Habel, and V. Jungnickel, “178 gb/s shortrange optical transmission based on ofdm, electrical up-conversion and signal combining,” in Proceedings of the European Conference on Optical Communication (ECOC), (2016).

C. Kottke, K. Habel, C. Schmidt, and V. Jungnickel, “154.9 gb/s ofdm transmission using im-dd, electrical iq-mixing and signal combining,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2016).
[Crossref]

C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
[Crossref]

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Soudris, D.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Tannert, T.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Tanzil, V. H.

C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
[Crossref]

Telang, V.

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

Tomkos, I.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Tzimpragos, G.

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

Wakita, H.

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

Wei, J.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

White, I. H.

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Widmann, D.

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Winzer, P.

X. Chen, S. Chandrasekhar, S. Randel, G. Raybon, A. Adamiecki, P. Pupalaikis, and P. Winzer, “All-electronic 100-ghz bandwidth digital-to-analog converter generating pam signals up to 190 gbaud,” J. Lightwave Technol. 35(3), 411–417 (2017).
[Crossref]

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Wolf, S.

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Yamazaki, H.

H. Yamazaki, M. Nagatani, S. Kanazawa, H. Nosaka, T. Hashimoto, A. Sano, and Y. Miyamoto, “Digital-preprocessed analog-multiplexed DAC for ultrawideband multilevel transmitter,” J. Lightwave Technol. 34(7), 1579–1584 (2016).
[Crossref]

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

IEEE Comm. Surv. and Tutor. (1)

G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A survey on FEC codes for 100 G and beyond optical networks,” IEEE Comm. Surv. and Tutor. 18(1), 209–221 (2016).
[Crossref]

IEEE Commun. Mag. (2)

J. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

C. Cole, I. Lyubomirsky, A. Ghiasi, and V. Telang, “Higher-order modulation for client optics,” IEEE Commun. Mag. 51(3), 50–57 (2013).
[Crossref]

J. Lightwave Technol. (4)

Other (14)

H. Yamazaki, M. Nagatani, F. Hamaoka, S. Kanazawa, H. Nosaka, T. Hashimoto, and Y. Miyamoto, “300-Gbps discrete multi-tone transmission using digital-preprocessed analog-multiplexed DAC with halved clock frequency and suppressed image,” in Proceedings of the 42nd European Conference on Optical Communication (ECOC) (2016).

T. Tannert, X. Q. Du, D. Widmann, M. Grözing, M. Berroth, C. Schmidt, C. Caspar, J. H. Choi, V. Jungnickel, and R. Freund, “A SiGe-HBT 2:1 Analog Multiplexer with more than 67 GHz Bandwidth,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (2017).
[Crossref]

Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2016–2021,” White Paper (2017).

C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “Enhancing the bandwidth of dacs by analog bandwidth interleaving,” in Proceedings of the 10th ITG-Symposium Broadband Coverage in Germany, VDE (2016).

C. Schmidt, V. H. Tanzil, C. Kottke, R. Freund, and V. Jungnickel, “Digital signal splitting among multiple dacs for analog bandwidth interleaving (abi),” in Proceedings of the IEEE International Conference on Electronics, Circuits, and Systems (2016).
[Crossref]

C. Kottke, K. Habel, C. Schmidt, and V. Jungnickel, “154.9 gb/s ofdm transmission using im-dd, electrical iq-mixing and signal combining,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2016).
[Crossref]

C. Kottke, C. Schmidt, K. Habel, and V. Jungnickel, “178 gb/s shortrange optical transmission based on ofdm, electrical up-conversion and signal combining,” in Proceedings of the European Conference on Optical Communication (ECOC), (2016).

C. Kottke, C. Schmidt, K. Habel, V. Jungnickel, and R. Freund, “Performance of Single-and Multi-Carrier Modulation with Additional Spectral Up-conversion for Wideband IM/DD Transmission,” in Proc. 18. ITG-Symposium on Photonic Networks, VDE, (2017).

C. Schmidt, C. Kottke, R. Freund, and V. Jungnickel, “Bandwidth Enhancement for an Optical Access Link by using a Frequency Interleaved DAC,” in Proc. Optical Fiber Communication Conference, Optical Society of America (2018, accepted, not yet published).

C. Schmidt, C. Kottke, V. Jungnickel, and R. Freund, “High-speed digital-to-analog converter concepts,” in Proceedings of SPIE Photonics West (2017), 10130.

X. Chen, S. Chandrasekhar, P. Pupalaikis, and P. Winzer, “Fast DAC solutions for future high symbol rate systems,” in Proc. Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

M. Nagatani, H. Yamazaki, H. Wakita, H. Nosaka, K. Kurishima, M. Ida, A. Sano, and Y. Miyamoto, “A 50-GHz-bandwidth InP-HBT analog-MUX module for high-symbol-rate optical communications systems,” in Proceedings of the International Microwave Symposium (IMS) (2016).
[Crossref]

S. Lange, S. Wolf, J. Lutz, L. Altenhain, R. Schmid, R. Kaiser, C. Koos, S. Randel, and M. Schell, “100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator,” in Proceedings of the Optical Fiber Communications Conference and Exhibition (OFC) (2017).
[Crossref]

Socionext, “100g to 400g adc and dac for ultra-high-speed optical networks,” http://socionextus.com/products/networking-asic/adc-dac/ (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Conceptual FI-DAC block diagram: the digital input signal (a) is split into several sub-signals in the frequency domain (b). These sub-signals are each D/A converted in base band (c) and then up-converted back to their native frequency locations (d). Finally, they are combined to form the analog representation (e) of the digital input signal (a).
Fig. 2
Fig. 2 Experimental setup consisting of an electrical FI-DAC and an optical IM/DD transmission link. Furthermore, SNR measurement points for DMT transmission are shown (see Sec. 6).
Fig. 3
Fig. 3 DSP block diagram: The time domain signal is fed through an FFT (a) and the corresponding frequency domain representation (b) is pulse-shaped (c). Then, the signal is split in the frequency domain with a digital diplexer (e,d). The second signal is further downconverted into baseband with a digital mixer (f). Both signals are pre-equalized and fed through IFFTs, which are then fed to the DACs. The split can be performed both with overlap (g) and without (h).
Fig. 4
Fig. 4 Measurement results: frequency response of the uncompensated FI-DAC (a); experimental electrical b2b eye diagram with a BER of 2.19·10−4 (b) and corresponding spectrum (c); simulated electrical b2b eye diagram with BER of 5.91·10−5 (d) and corresponding spectrum (e); magnitude and phase of the compensated channel’s frequency response (f); experimental optical eye diagram for 2 km IM/DD transmission with additional post-equalizer with a BER of 1.53·10−3 (g).
Fig. 5
Fig. 5 Obtained results from experiment and simulation: BER versus power spectral density difference between the bands (a); BER versus LO phase offset (b).
Fig. 6
Fig. 6 Histograms of the digital sub-signals I and II for different PAM orders: without pre-equalization (a,b); with pre-equalization (c,d).
Fig. 7
Fig. 7 Obtained results from experiment and simulation: BER versus spectral overlap (a), PAPR versus spectral overlap (b).
Fig. 8
Fig. 8 Obtained results from simulation: BER versus clipping according to a certain PAPR (a); BER versus DAC resolution (b).
Fig. 9
Fig. 9 Measured SNR values based on a DMT signal at different points in the transmission system: after the DAC#1 + 2, after the diplexer and after the photodiode.

Tables (1)

Tables Icon

Table 1 PAPR values of sub-signals for different PAM orders: without and with pre-equalization.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P TOT =N P DAC + n=2 N ( P LO,n + P AMP,n ) ,

Metrics