Abstract

A metal-dielectric-metal gradient phase partially reflecting surface based on the combination of a gradient index dielectric substrate with an inductive and a capacitive grids, is designed at microwave frequencies for antenna applications. The gradient index is obtained by realizing air holes of different dimensions in a dielectric host material. A prototype of the gradient index dielectric substrate is fabricated through three-dimensional printing, an additive fabrication technology. It is then associated to two patterned metallic grids to realize a partially reflecting surface with a gradient phase behavior. For experimental validation, the partially reflective surface is used as reflector in a low-profile Fabry-Perot cavity antenna. An angular enhancement of the emitted beam in a desired direction is reported by further engineering the phase introduced by the inductive and the capacitive grids. Far-field measurements are performed on fabricated antenna prototypes to validate the concept. Such gradient phase reflective surface paves the way to low-cost easy-made microwave metal-dielectric surfaces incorporating functionalities such as beam control, forming and collimation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable meta-mirror for wavefronts control: applications to microwave antennas

Badreddine Ratni, André de Lustrac, Gérard-Pascal Piau, and Shah Nawaz Burokur
Opt. Express 26(3) 2613-2624 (2018)

Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase

Bijun Xu, Chao Wu, Zeyong Wei, Yuancheng Fan, and Hongqiang Li
Opt. Mater. Express 6(12) 3940-3945 (2016)

Experimental validation of active holographic metasurface for electrically beam steering

Kuang Zhang, Hao Yu, Xumin Ding, and Qun Wu
Opt. Express 26(5) 6316-6324 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  2. W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
    [Crossref]
  3. C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
    [Crossref] [PubMed]
  4. W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
    [Crossref]
  5. W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
    [Crossref]
  6. N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
    [Crossref] [PubMed]
  7. H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1(8), 124 (2010).
    [Crossref] [PubMed]
  8. J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens,” Appl. Phys. Lett. 107(2), 024101 (2015).
    [Crossref]
  9. J. Yi, S. N. Burokur, and A. de Lustrac, “Experimental validation of a transformation optics based lens for beam steering,” Appl. Phys. Lett. 107(15), 154101 (2015).
    [Crossref]
  10. J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6(1), 18819 (2016).
    [Crossref] [PubMed]
  11. P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011).
    [Crossref]
  12. Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84(16), 165111 (2011).
    [Crossref]
  13. P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111(13), 133901 (2013).
    [Crossref] [PubMed]
  14. K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
    [Crossref]
  15. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  16. E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
    [Crossref]
  17. Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
    [Crossref] [PubMed]
  18. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
    [Crossref]
  19. A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antenn. Propag. 53(1), 209–215 (2005).
    [Crossref]
  20. L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
    [Crossref]
  21. A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88(8), 084103 (2006).
    [Crossref]
  22. S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bi-layered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
    [Crossref]
  23. A. Ourir, S. N. Burokur, and A. de Lustrac, “Phase-varying metamaterial for compact steerable directive antennas,” Electron. Lett. 43(9), 493–494 (2007).
    [Crossref]
  24. A. Ourir, S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering,” C. R. Phys. 10(5), 414–422 (2009).
    [Crossref]
  25. A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
    [Crossref]
  26. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
    [Crossref]
  27. ANSYS Electromagnetics Suite, release 18.2 (2017).
  28. See http://www.stratasys.com/3d-printers/design-series/objet-eden260vs for further details on the specifications of the Objet Eden260VS printer.
  29. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997), Chap. 6.
  30. S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Subwavelength metamaterial-based resonant cavities fed by multiple sources for high directivity,” Microw. Opt. Technol. Lett. 51(8), 1883–1888 (2009).
    [Crossref]
  31. R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap,” IEEE Antennas Wirel. Propag. Lett. 11, 1426–1429 (2012).
    [Crossref]
  32. R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface,” IEEE Trans. Antenn. Propag. 60(11), 5046–5055 (2012).
    [Crossref]
  33. W. Yang, T. Sun, Y. Rao, M. Megens, T. Chan, B.-W. Yoo, D. A. Horsley, M. C. Wu, and C. J. Chang-Hasnain, “High speed optical phased array using high contrast grating all-pass filters,” Opt. Express 22(17), 20038–20044 (2014).
    [Crossref] [PubMed]

2016 (2)

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6(1), 18819 (2016).
[Crossref] [PubMed]

K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
[Crossref]

2015 (3)

Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
[Crossref] [PubMed]

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens,” Appl. Phys. Lett. 107(2), 024101 (2015).
[Crossref]

J. Yi, S. N. Burokur, and A. de Lustrac, “Experimental validation of a transformation optics based lens for beam steering,” Appl. Phys. Lett. 107(15), 154101 (2015).
[Crossref]

2014 (2)

2013 (3)

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111(13), 133901 (2013).
[Crossref] [PubMed]

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

2012 (2)

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap,” IEEE Antennas Wirel. Propag. Lett. 11, 1426–1429 (2012).
[Crossref]

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface,” IEEE Trans. Antenn. Propag. 60(11), 5046–5055 (2012).
[Crossref]

2011 (3)

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011).
[Crossref]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84(16), 165111 (2011).
[Crossref]

2010 (5)

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[Crossref]

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1(8), 124 (2010).
[Crossref] [PubMed]

S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bi-layered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[Crossref]

2009 (3)

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

A. Ourir, S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering,” C. R. Phys. 10(5), 414–422 (2009).
[Crossref]

S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Subwavelength metamaterial-based resonant cavities fed by multiple sources for high directivity,” Microw. Opt. Technol. Lett. 51(8), 1883–1888 (2009).
[Crossref]

2007 (1)

A. Ourir, S. N. Burokur, and A. de Lustrac, “Phase-varying metamaterial for compact steerable directive antennas,” Electron. Lett. 43(9), 493–494 (2007).
[Crossref]

2006 (2)

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88(8), 084103 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antenn. Propag. 53(1), 209–215 (2005).
[Crossref]

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

2004 (1)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Breinbjerg, O.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

Burokur, S. N.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6(1), 18819 (2016).
[Crossref] [PubMed]

J. Yi, S. N. Burokur, and A. de Lustrac, “Experimental validation of a transformation optics based lens for beam steering,” Appl. Phys. Lett. 107(15), 154101 (2015).
[Crossref]

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens,” Appl. Phys. Lett. 107(2), 024101 (2015).
[Crossref]

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111(13), 133901 (2013).
[Crossref] [PubMed]

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011).
[Crossref]

S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bi-layered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[Crossref]

A. Ourir, S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering,” C. R. Phys. 10(5), 414–422 (2009).
[Crossref]

S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Subwavelength metamaterial-based resonant cavities fed by multiple sources for high directivity,” Microw. Opt. Technol. Lett. 51(8), 1883–1888 (2009).
[Crossref]

A. Ourir, S. N. Burokur, and A. de Lustrac, “Phase-varying metamaterial for compact steerable directive antennas,” Electron. Lett. 43(9), 493–494 (2007).
[Crossref]

Cai, B. G.

Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
[Crossref] [PubMed]

Chan, C. T.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Chan, T.

Chang-Hasnain, C. J.

Chen, H.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Cheng, Q.

Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[Crossref]

Cui, T. J.

Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
[Crossref] [PubMed]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1(8), 124 (2010).
[Crossref] [PubMed]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Daniel, J.-P.

S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bi-layered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[Crossref]

de Lustrac, A.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6(1), 18819 (2016).
[Crossref] [PubMed]

J. Yi, S. N. Burokur, and A. de Lustrac, “Experimental validation of a transformation optics based lens for beam steering,” Appl. Phys. Lett. 107(15), 154101 (2015).
[Crossref]

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens,” Appl. Phys. Lett. 107(2), 024101 (2015).
[Crossref]

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111(13), 133901 (2013).
[Crossref] [PubMed]

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011).
[Crossref]

S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bi-layered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[Crossref]

A. Ourir, S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering,” C. R. Phys. 10(5), 414–422 (2009).
[Crossref]

S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Subwavelength metamaterial-based resonant cavities fed by multiple sources for high directivity,” Microw. Opt. Technol. Lett. 51(8), 1883–1888 (2009).
[Crossref]

A. Ourir, S. N. Burokur, and A. de Lustrac, “Phase-varying metamaterial for compact steerable directive antennas,” Electron. Lett. 43(9), 493–494 (2007).
[Crossref]

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88(8), 084103 (2006).
[Crossref]

de Maagt, P.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

Dhouibi, A.

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

Ding, X.

K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
[Crossref]

Ederra, I.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Fang, G.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Feresidis, A. P.

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antenn. Propag. 53(1), 209–215 (2005).
[Crossref]

Germain, D.

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011).
[Crossref]

Ghasemi, A.

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

Gomez-Tornero, J. L.

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap,” IEEE Antennas Wirel. Propag. Lett. 11, 1426–1429 (2012).
[Crossref]

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface,” IEEE Trans. Antenn. Propag. 60(11), 5046–5055 (2012).
[Crossref]

Gonzalo, R.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

Goussetis, G.

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antenn. Propag. 53(1), 209–215 (2005).
[Crossref]

Gregory, M. D.

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84(16), 165111 (2011).
[Crossref]

Guo, Y. J.

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap,” IEEE Antennas Wirel. Propag. Lett. 11, 1426–1429 (2012).
[Crossref]

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface,” IEEE Trans. Antenn. Propag. 60(11), 5046–5055 (2012).
[Crossref]

Guzman-Quiros, R.

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface,” IEEE Trans. Antenn. Propag. 60(11), 5046–5055 (2012).
[Crossref]

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap,” IEEE Antennas Wirel. Propag. Lett. 11, 1426–1429 (2012).
[Crossref]

Han, T. C.

W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Horsley, D. A.

Jiang, W. X.

W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[Crossref]

Jiang, Z. H.

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84(16), 165111 (2011).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kundtz, N.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Li, C.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Li, F.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Li, H.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Li, L. L.

Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
[Crossref] [PubMed]

Li, Y. B.

Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
[Crossref] [PubMed]

Liu, X.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lourtioz, J.-M.

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88(8), 084103 (2006).
[Crossref]

Ma, H. F.

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1(8), 124 (2010).
[Crossref] [PubMed]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[Crossref]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martín, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Megens, M.

Meng, F.

K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
[Crossref]

Meng, X.

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Ourir, A.

A. Ourir, S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering,” C. R. Phys. 10(5), 414–422 (2009).
[Crossref]

A. Ourir, S. N. Burokur, and A. de Lustrac, “Phase-varying metamaterial for compact steerable directive antennas,” Electron. Lett. 43(9), 493–494 (2007).
[Crossref]

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88(8), 084103 (2006).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Piau, G.-P.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6(1), 18819 (2016).
[Crossref] [PubMed]

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens,” Appl. Phys. Lett. 107(2), 024101 (2015).
[Crossref]

Pivnenko, S.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Qin, Y.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Qiu, C.-W.

W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111(13), 133901 (2013).
[Crossref] [PubMed]

Rao, Y.

Ratajczak, P.

S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bi-layered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[Crossref]

Saenz, E.

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Smith, D. R.

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, T.

Tichit, P.-H.

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111(13), 133901 (2013).
[Crossref] [PubMed]

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011).
[Crossref]

Vardaxoglou, J. C.

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antenn. Propag. 53(1), 209–215 (2005).
[Crossref]

Wan, X.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Wang, S.

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antenn. Propag. 53(1), 209–215 (2005).
[Crossref]

Wei, Z.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Weily, A. R.

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap,” IEEE Antennas Wirel. Propag. Lett. 11, 1426–1429 (2012).
[Crossref]

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface,” IEEE Trans. Antenn. Propag. 60(11), 5046–5055 (2012).
[Crossref]

Werner, D. H.

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84(16), 165111 (2011).
[Crossref]

Wo, D.

K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
[Crossref]

Wu, M. C.

Wu, Q.

K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
[Crossref]

Yahiaoui, R.

S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Subwavelength metamaterial-based resonant cavities fed by multiple sources for high directivity,” Microw. Opt. Technol. Lett. 51(8), 1883–1888 (2009).
[Crossref]

A. Ourir, S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering,” C. R. Phys. 10(5), 414–422 (2009).
[Crossref]

Yang, W.

Yang, X. M.

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

Yi, J.

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6(1), 18819 (2016).
[Crossref] [PubMed]

J. Yi, S. N. Burokur, and A. de Lustrac, “Experimental validation of a transformation optics based lens for beam steering,” Appl. Phys. Lett. 107(15), 154101 (2015).
[Crossref]

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens,” Appl. Phys. Lett. 107(2), 024101 (2015).
[Crossref]

Yoo, B.-W.

Zhang, K.

K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
[Crossref]

Zhang, S.

W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Zhao, J.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Zhou, L.

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

Adv. Funct. Mater. (1)

W. X. Jiang, C.-W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, “Creation of ghost illusions using wave dynamics in metamaterials,” Adv. Funct. Mater. 23(32), 4028–4034 (2013).
[Crossref]

Appl. Phys. Lett. (8)

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens,” Appl. Phys. Lett. 107(2), 024101 (2015).
[Crossref]

J. Yi, S. N. Burokur, and A. de Lustrac, “Experimental validation of a transformation optics based lens for beam steering,” Appl. Phys. Lett. 107(15), 154101 (2015).
[Crossref]

W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, “Illusion media: Generating virtual objects using realizable metamaterials,” Appl. Phys. Lett. 96(12), 121910 (2010).
[Crossref]

W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, “Shrinking an arbitrary object as one desires using metamaterials,” Appl. Phys. Lett. 98(20), 204101 (2011).
[Crossref]

K. Zhang, X. Ding, D. Wo, F. Meng, and Q. Wu, “Experimental validation of ultra-thin metalenses for N-beam emissions based on transformation optics,” Appl. Phys. Lett. 108(5), 053508 (2016).
[Crossref]

L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86(10), 101101 (2005).
[Crossref]

A. Ourir, A. de Lustrac, and J.-M. Lourtioz, “All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas,” Appl. Phys. Lett. 88(8), 084103 (2006).
[Crossref]

S. N. Burokur, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bi-layered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97(6), 064101 (2010).
[Crossref]

C. R. Phys. (1)

A. Ourir, S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Directive metamaterial-based subwavelength resonant cavity antennas – Applications for beam steering,” C. R. Phys. 10(5), 414–422 (2009).
[Crossref]

Electron. Lett. (1)

A. Ourir, S. N. Burokur, and A. de Lustrac, “Phase-varying metamaterial for compact steerable directive antennas,” Electron. Lett. 43(9), 493–494 (2007).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronic full-space scanning with 1-D Fabry-Pérot LWA using electromagnetic band-gap,” IEEE Antennas Wirel. Propag. Lett. 11, 1426–1429 (2012).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

R. Guzman-Quiros, J. L. Gomez-Tornero, A. R. Weily, and Y. J. Guo, “Electronically steerable 1-D Fabry-Perot leaky-wave antenna employing a tunable high impedance surface,” IEEE Trans. Antenn. Propag. 60(11), 5046–5055 (2012).
[Crossref]

A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Trans. Antenn. Propag. 53(1), 209–215 (2005).
[Crossref]

E. Saenz, I. Ederra, R. Gonzalo, S. Pivnenko, O. Breinbjerg, and P. de Maagt, “Coupling reduction between dipole antenna elements by using a planar meta-surface,” IEEE Trans. Antenn. Propag. 57(2), 383–394 (2009).
[Crossref]

Light Sci. Appl. (1)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3(10), e218 (2014).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. N. Burokur, R. Yahiaoui, and A. de Lustrac, “Subwavelength metamaterial-based resonant cavities fed by multiple sources for high directivity,” Microw. Opt. Technol. Lett. 51(8), 1883–1888 (2009).
[Crossref]

Nat. Commun. (1)

H. F. Ma and T. J. Cui, “Three-dimensional broadband and broad-angle transformation-optics lens,” Nat. Commun. 1(8), 124 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Kundtz and D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (3)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).
[Crossref]

P.-H. Tichit, S. N. Burokur, D. Germain, and A. de Lustrac, “Design and experimental demonstration of a high-directive emission with transformation optics,” Phys. Rev. B 83(15), 155108 (2011).
[Crossref]

Z. H. Jiang, M. D. Gregory, and D. H. Werner, “Experimental demonstration of a broadband transformation optics lens for highly directive multibeam emission,” Phys. Rev. B 84(16), 165111 (2011).
[Crossref]

Phys. Rev. Lett. (3)

P.-H. Tichit, S. N. Burokur, C.-W. Qiu, and A. de Lustrac, “Experimental verification of isotropic radiation from a coherent dipole source via electric-field-driven LC resonator metamaterials,” Phys. Rev. Lett. 111(13), 133901 (2013).
[Crossref] [PubMed]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

C. Li, X. Meng, X. Liu, F. Li, G. Fang, H. Chen, and C. T. Chan, “Experimental realization of a circuit-based broadband illusion-optics analogue,” Phys. Rev. Lett. 105(23), 233906 (2010).
[Crossref] [PubMed]

Sci. Rep. (2)

J. Yi, S. N. Burokur, G.-P. Piau, and A. de Lustrac, “Coherent beam control with an all-dielectric transformation optics based lens,” Sci. Rep. 6(1), 18819 (2016).
[Crossref] [PubMed]

Y. B. Li, L. L. Li, B. G. Cai, Q. Cheng, and T. J. Cui, “Holographic leaky-wave metasurfaces for dual-sensor imaging,” Sci. Rep. 5(1), 18170 (2015).
[Crossref] [PubMed]

Science (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (3)

ANSYS Electromagnetics Suite, release 18.2 (2017).

See http://www.stratasys.com/3d-printers/design-series/objet-eden260vs for further details on the specifications of the Objet Eden260VS printer.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 1997), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Unit cell consisting of air hole in a dielectric host material and schematic design of the dielectric GRIN substrate.
Fig. 2
Fig. 2 Parametric study of the cubic dielectric unit cell where air hole radius r is changed, while p = 5 mm and t = 5 mm. (a) Reflection magnitude, R (dB). (b) Transmission magnitude, T (dB). (c) Reflection phase, R (deg). (d) Transmission phase, T (deg).
Fig. 3
Fig. 3 (a) Parametric study of the cubic dielectric unit cell where dielectric thickness t is changed, while p = 5 mm and r = 2.1 mm. (a) Reflection magnitude, R (dB). (b) Transmission magnitude, T (dB). (c) Reflection phase, R (deg). (d) Transmission phase, T (deg).
Fig. 4
Fig. 4 Electromagnetic response at 5 GHz along the dielectric substrate. (a) Reflection magnitude, R (dB). (b) Transmission magnitude, T (dB). (c) Reflection phase, R (deg). (d) Transmission phase, T (deg).
Fig. 5
Fig. 5 (a) Design of the dielectric GRIN substrate combined with inductive and capacitive grids. A description of the unit cell of the combined structure is given, where p = 5 mm, d = 5.4 mm. Magnitude (b) and phase (c) of the reflection and transmission coefficients when wl = 2.4 mm, wc = 4.6 mm, r = 2.1 mm and t = 1.6 mm.
Fig. 6
Fig. 6 (a) Photography of the fabricated dielectric GRIN substrate where εeff value varies from 1.13 to 2.8. (b) Photography of the fabricated inductive metasurface. (c) Photography of the fabricated capacitive metasurface. Zoomed details are shown in the insets.
Fig. 7
Fig. 7 (a) Schematic view of the cavity composed of a PEC and a phase gradient PRS. (b) Transmission phase values along the uniform phase and gradient phase PRS. (c) S11 coefficient of the FP cavity antennas. (d) Far-field radiation patterns in the H-plane (yoz plane) showing beam deflection when using the GP PRS.
Fig. 8
Fig. 8 (a) Amplitude (|En|) and phase (φn) values of the electric field along the gradient phase PRS. (b) The far-field radiation pattern calculated in the yoz plane using antenna array theory showing a beam deflection of 25°.
Fig. 9
Fig. 9 Influence of fabrication tolerance of the GRIN substrate on steering performance of the Fabry-Perot cavity antenna. In the original GP PRS, εeff values of the GRIN substrate are 1.0, 1.13, 1.26, 1.75, 2.44 and 2.8 whereas in the modified GP PRS, εeff values are 1.0, 1.2, 1.35, 1.96, 2.53 and 2.8.
Fig. 10
Fig. 10 Parametric study of the metal-dielectric-metal unit cell composed of a dielectric and inductive and capacitive grids. (a) and (c) Transmission magnitude and phase for different values of wl. (b) and (d) Transmission magnitude and phase for different values of wc.
Fig. 11
Fig. 11 (a) Photography of the fabricated non-uniform inductive grid where wl varies from 0.4 mm to 4.3 mm. (b) Photography of the fabricated non-uniform capacitive grid where wc varies from 4.6 mm to 4.9 mm.
Fig. 12
Fig. 12 (a) Transmission phase values along the gradient phase PRS for various PRS configurations. (b) Uniform inductive and non-uniform capacitive grids: 40° beam deflection. (c) Uniform capacitive and non-uniform inductive grids: 55° beam deflection (d) Non-uniform inductive and capacitive grids: 70° beam deflection. The far-field radiation patterns are plotted in the H-plane (yoz plane).
Fig. 13
Fig. 13 (a) Transmission phase values along the gradient phase PRS for various configurations. (b) Far-field radiation patterns in the H-plane (yoz plane) showing beam deflection when using the gradient phase PRS. High beam steering can also be obtained by combining uniform LC grids with a GRIN substrate using a high index host dielectric material.
Fig. 14
Fig. 14 (a) Transmission phase values along the gradient phase PRS. (b) Far-field radiation patterns in the H-plane (yoz plane) showing beam deflection reduced to nearly 0°.

Tables (2)

Tables Icon

Table 1 Geometrical Dimensions of Air Holes in Dielectric Host Materials and Resulting Effective Permittivity in the Different Regions of the Substrate

Tables Icon

Table 2 Geometrical Dimensions for the Different Antenna Configurations and Summary of the Deflection Angle Achieved. For All Configurations: εeff1 to εeff16 = 1, εeff17 to εeff18 = 1.13, εeff19 to εeff20 = 1.26, εeff21 to εeff22 = 1.75, εeff23 to εeff24 = 2.44, and εeff25 to εeff40 = 2.8.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

AF= n=1 N | E n | e j[ nkpcos( θ )+ ϕ n ]

Metrics