Abstract

The understanding of how bending modifies the dispersion of optical fibers, in particular, the zero-dispersion wavelength (λ0), is essential in the development of compact nonlinear optical devices such as parametric amplifiers, wavelength converters, soliton lasers and frequency comb generators. Typically, substantial variations in the parametric gain and/or conversion efficiency are significant for changes in λ0 of ~0.1 nm, which occur for variations on the bending radius (Rb) of 1 cm or less. Measuring λ0 as a function of bending radius (Rb) is challenging, as it requires detecting changes < 0.1 nm and in short fibers. By using a method based on four-wave mixing (FWM) generated by an incoherent-pump with relatively broad spectrum and a weak laser, we report measurements of λ0 as a function of Rb in a dispersion-shifted fiber with <0.1 nm accuracy on λ0. This method is sensitive enough to measure small variations in λ0 of ~0.04 nm in very short fibers (~20 m). We observe that λ0 increases by 12 nm when Rb is decreased from 10 cm to 1 cm, and a change of 1 nm is obtained for Rb = 3 cm. We also present numerical simulations of the bent fiber that are in good agreement with our measurements, and help us to explain the observations and to predict how high-order dispersion is modified with bending. This study can provide insights for dispersion engineering, in which bending could be used as a tuning, equalization, or tailoring mechanism for λ0, which can be used in the development of compact nonlinear optical devices based on fibers or other bent-waveguide structures.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution zero-dispersion wavelength mapping in single-mode fiber

I. Brener, P. P. Mitra, D. D. Lee, D. J. Thomson, and D. L. Philen
Opt. Lett. 23(19) 1520-1522 (1998)

Optical parametric gain and bandwidth in highly nonlinear tellurite hybrid microstructured optical fiber with four zero-dispersion wavelengths

Tong Hoang Tuan, Tonglei Cheng, Koji Asano, Zhongchao Duan, Weiqing Gao, Dinghuan Deng, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 21(17) 20303-20312 (2013)

Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers

J. M. Chávez Boggio and H. L. Fragnito
J. Opt. Soc. Am. B 24(9) 2046-2054 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
    [Crossref] [PubMed]
  2. S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
    [Crossref]
  3. N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
    [Crossref]
  4. M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998).
    [Crossref]
  5. M. Farahmand and M. de Sterke, “Parametric amplification in presence of dispersion fluctuations,” Opt. Express 12(1), 136–142 (2004).
    [Crossref] [PubMed]
  6. F. Gholami, J. M. Chavez Boggio, S. Moro, N. Alic, and S. Radic, “Measurement of ultra-low fourth order dispersion coefficient in nonlinear fiber by distant low-power FWM,” in Proceedings of IEEE Photonics Society Summer Topical Meeting (IEEE 2010), pp. 162–163.
    [Crossref]
  7. I. J. Blewett, “Effect of bending on chromatic dispersion of singlemode optical fibres,” Electron. Lett. 30(7), 592–594 (1994).
    [Crossref]
  8. J. M. Chávez Boggio and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B 24(9), 2046–2054 (2007).
    [Crossref]
  9. B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
    [Crossref]
  10. E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
    [Crossref]
  11. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
    [Crossref]
  12. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
    [Crossref]
  13. S. J. Garth, “Effect of bending on zero dispersion operation of single-mode optical fibers,” Appl. Opt. 30(9), 1048–1051 (1991).
    [Crossref] [PubMed]
  14. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express 19(9), 8102–8107 (2011).
    [Crossref] [PubMed]
  15. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 16(14), 10596–10610 (2008).
    [Crossref] [PubMed]
  16. C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
    [Crossref]
  17. B. J. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
    [Crossref]
  18. W. A. Reed, L. G. Cohen, and H. T. Shang, “Tailoring optical characteristics of dispersion-shifted lightguides for applications near 1.55 µm,” Bell Labs Tech. J. 65(5), 105–122 (1986).
  19. F. Wassmann, “Modal field analysis of circularly bent single-mode fibers,” J. Lightwave Technol. 17(5), 957–968 (1999).
    [Crossref]
  20. W. A. Gambling, H. Matsumura, and R. A. Sammut, “Mode shift at bends in single-mode fibres,” Electron. Lett. 13(23), 695–697 (1977).
    [Crossref]
  21. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
    [Crossref] [PubMed]
  22. F. Gérôme, J. L. Auguste, and J. M. Blondy, “Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber,” Opt. Lett. 29(23), 2725–2727 (2004).
    [Crossref] [PubMed]
  23. K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
    [Crossref]
  24. Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
    [Crossref]
  25. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  26. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  27. A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
    [Crossref]
  28. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
    [Crossref] [PubMed]
  29. E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
    [Crossref]
  30. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [Crossref] [PubMed]
  31. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4496 (1984).
    [Crossref] [PubMed]

2012 (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

2011 (3)

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner, “Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators,” Opt. Express 19(9), 8102–8107 (2011).
[Crossref] [PubMed]

2010 (2)

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

2009 (2)

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

2008 (1)

2007 (3)

2006 (2)

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
[Crossref] [PubMed]

2004 (3)

1999 (2)

F. Wassmann, “Modal field analysis of circularly bent single-mode fibers,” J. Lightwave Technol. 17(5), 957–968 (1999).
[Crossref]

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

1998 (1)

1994 (1)

I. J. Blewett, “Effect of bending on chromatic dispersion of singlemode optical fibres,” Electron. Lett. 30(7), 592–594 (1994).
[Crossref]

1992 (1)

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

1991 (1)

1990 (1)

N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
[Crossref]

1986 (2)

B. J. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

W. A. Reed, L. G. Cohen, and H. T. Shang, “Tailoring optical characteristics of dispersion-shifted lightguides for applications near 1.55 µm,” Bell Labs Tech. J. 65(5), 105–122 (1986).

1984 (1)

1980 (1)

1977 (1)

W. A. Gambling, H. Matsumura, and R. A. Sammut, “Mode shift at bends in single-mode fibres,” Electron. Lett. 13(23), 695–697 (1977).
[Crossref]

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Ainslie, B. J.

B. J. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Alic, N.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
[Crossref] [PubMed]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Andrekson, P. A.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Aparicio, J. M.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
[Crossref] [PubMed]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Auguie, B.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Auguste, J. L.

Balch, K.

Beausoleil, R. G.

Bedgood, M. A.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Blessing, D. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Blewett, I. J.

I. J. Blewett, “Effect of bending on chromatic dispersion of singlemode optical fibres,” Electron. Lett. 30(7), 592–594 (1994).
[Crossref]

Blondy, J. M.

Boggio, J. M. C.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Boucon, A.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Bres, C. S.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Byron, K. C.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Chavez Boggio, J. M.

Chávez Boggio, J. M.

Cohen, L. G.

W. A. Reed, L. G. Cohen, and H. T. Shang, “Tailoring optical characteristics of dispersion-shifted lightguides for applications near 1.55 µm,” Bell Labs Tech. J. 65(5), 105–122 (1986).

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

Day, C.

B. J. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

de Sterke, M.

Diddams, S. A.

Divliansky, I. B.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Eickhoff, W.

Farahmand, M.

Finney, A.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Fleming, J. W.

Fragnito, H. L.

J. M. Chávez Boggio and H. L. Fragnito, “Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers,” J. Opt. Soc. Am. B 24(9), 2046–2054 (2007).
[Crossref]

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

Gambling, W. A.

W. A. Gambling, H. Matsumura, and R. A. Sammut, “Mode shift at bends in single-mode fibres,” Electron. Lett. 13(23), 695–697 (1977).
[Crossref]

Garth, S. J.

George, A. K.

Gérôme, F.

Gholami, F.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Grosz, D. F.

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

Grüner-Nielsen, L.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Habert, R.

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

Johnson, T. J.

Jørgensen, C. G.

Karlsson, M.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

M. Karlsson, “Four-wave mixing in fibers with randomly varying zero-dispersion wavelength,” J. Opt. Soc. Am. B 15(8), 2269–2275 (1998).
[Crossref]

Knight, J. C.

Kudlinski, A.

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006).
[Crossref] [PubMed]

Kuwaki, N.

N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
[Crossref]

Lantz, E.

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Lin, Q.

Lundström, C.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Matsumura, H.

W. A. Gambling, H. Matsumura, and R. A. Sammut, “Mode shift at bends in single-mode fibres,” Electron. Lett. 13(23), 695–697 (1977).
[Crossref]

Mazzali, C.

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

McGauran, C.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

McKinstrie, C. J.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Michael, C. P.

Moro, S.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Mussot, A.

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Myslivets, E.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

Newbury, N. R.

Nicholson, J. W.

Ohashi, M.

N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
[Crossref]

Painter, O. J.

Park, J. S.

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Perahia, R.

Popov, S. V.

Radic, S.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

Rashleigh, S. C.

Reed, W. A.

W. A. Reed, L. G. Cohen, and H. T. Shang, “Tailoring optical characteristics of dispersion-shifted lightguides for applications near 1.55 µm,” Bell Labs Tech. J. 65(5), 105–122 (1986).

Rulkov, A. B.

Sammut, R. A.

W. A. Gambling, H. Matsumura, and R. A. Sammut, “Mode shift at bends in single-mode fibres,” Electron. Lett. 13(23), 695–697 (1977).
[Crossref]

Savory, S.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15(24), 15674–15701 (2007).
[Crossref] [PubMed]

Shang, H. T.

W. A. Reed, L. G. Cohen, and H. T. Shang, “Tailoring optical characteristics of dispersion-shifted lightguides for applications near 1.55 µm,” Bell Labs Tech. J. 65(5), 105–122 (1986).

Sylvestre, T.

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Taylor, J. R.

Tong, Z.

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

Travers, J. C.

Ulrich, R.

Washburn, B. R.

Wassmann, F.

Watson, I.

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

Wiberg, A. O. J.

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

Willner, A. E.

Windmiller, J. R.

Yan, M. F.

Yue, Y.

Zhang, L.

Zlatanovic, S.

J. M. Chavez Boggio, S. Zlatanovic, F. Gholami, J. M. Aparicio, S. Moro, K. Balch, N. Alic, and S. Radic, “Short wavelength infrared frequency conversion in ultra-compact fiber device,” Opt. Express 18(2), 439–445 (2010).
[Crossref] [PubMed]

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Appl. Opt. (2)

Bell Labs Tech. J. (1)

W. A. Reed, L. G. Cohen, and H. T. Shang, “Tailoring optical characteristics of dispersion-shifted lightguides for applications near 1.55 µm,” Bell Labs Tech. J. 65(5), 105–122 (1986).

Electron. Lett. (3)

W. A. Gambling, H. Matsumura, and R. A. Sammut, “Mode shift at bends in single-mode fibres,” Electron. Lett. 13(23), 695–697 (1977).
[Crossref]

K. C. Byron, M. A. Bedgood, A. Finney, C. McGauran, S. Savory, and I. Watson, “Shifts in zero dispersion wavelength due to pressure, temperature and strain in dispersion shifted singlemode fibres,” Electron. Lett. 28(18), 1712–1714 (1992).
[Crossref]

I. J. Blewett, “Effect of bending on chromatic dispersion of singlemode optical fibres,” Electron. Lett. 30(7), 592–594 (1994).
[Crossref]

IEEE J. Quantum Electron. (3)

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007).
[Crossref]

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975).
[Crossref]

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (3)

E. Myslivets, C. Lundström, J. M. Aparicio, S. Moro, A. O. J. Wiberg, C. S. Bres, N. Alic, P. A. Andrekson, and S. Radic, “Spatial equalization of zero-dispersion wavelength profiles in nonlinear fibers,” IEEE Photonics Technol. Lett. 21(24), 1807–1809 (2009).
[Crossref]

B. Auguie, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

C. Mazzali, D. F. Grosz, and H. L. Fragnito, “Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers,” IEEE Photonics Technol. Lett. 11(2), 251–253 (1999).
[Crossref]

J. Lightwave Technol. (4)

B. J. Ainslie and C. Day, “A review of single-mode fibers with modified dispersion characteristics,” J. Lightwave Technol. 4(8), 967–979 (1986).
[Crossref]

E. Myslivets, N. Alic, J. R. Windmiller, and S. Radic, “A new class of high-resolution measurements of arbitrary-dispersion fibers: localization of four-photon mixing process,” J. Lightwave Technol. 27(3), 364–375 (2009).
[Crossref]

N. Kuwaki and M. Ohashi, “Evaluation of longitudinal chromatic dispersion,” J. Lightwave Technol. 8(10), 1476–1481 (1990).
[Crossref]

F. Wassmann, “Modal field analysis of circularly bent single-mode fibers,” J. Lightwave Technol. 17(5), 957–968 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (3)

S. Zlatanovic, J. S. Park, S. Moro, J. M. C. Boggio, I. B. Divliansky, N. Alic, and S. Radic, “Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source,” Nat. Photonics 4(8), 561–564 (2010).
[Crossref]

Z. Tong, C. Lundström, P. A. Andrekson, C. J. McKinstrie, M. Karlsson, D. J. Blessing, and L. Grüner-Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers,” Nat. Photonics 5(7), 430–436 (2011).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Other (1)

F. Gholami, J. M. Chavez Boggio, S. Moro, N. Alic, and S. Radic, “Measurement of ultra-low fourth order dispersion coefficient in nonlinear fiber by distant low-power FWM,” in Proceedings of IEEE Photonics Society Summer Topical Meeting (IEEE 2010), pp. 162–163.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Predicted FWM spectrum according to Eq. (1), normalized to the peak power spectral density S(ωFWM) in dB (inset: linear scale).
Fig. 2
Fig. 2 Measured FWM spectrum as a function of the laser wavelength (λ) for Rb = 8.17 cm. Resolution bandwidth (RBW) = 100 pm.
Fig. 3
Fig. 3 (a) Experimental setup used for λ0 measurement of the fiber under test (FUT) for different Rb. (b) Optical spectrum at the output of the FUT (Inset: FWM spectrum after the HPFs). RBW = 100 pm.
Fig. 4
Fig. 4 Normalized FWM power spectra for the same λ = 1640.4 nm and (a) several values of Rb (and x polarization). Comparison between spectra for x and y polarizations for (b) Rb = 4 cm and (c) Rb = 1.2 cm. (RBW = 10 pm).
Fig. 5
Fig. 5 Measured and calculated λ0 for x and y polarizations (left axis), and calculated loss for the 20 m of DSF (right axis) as a function of Rb. Measured loss for Rb = 1 cm (*).
Fig. 6
Fig. 6 Refractive index profile of the conformal mapped fiber model for Rb (a) 10 cm and (b) 0.5 cm. Calculated normalized intensity for the u-polarization for Rb (c) 10 cm and (d) 0.5 cm. The shadowed areas in (a) and (b) correspond to the region of higher intensity (above 50% of the peak intensity) in (c) and (d) respectively. The refractive index profiles and mode distributions correspond to λ = 1550 nm. The center of curvature of the bend is to the left in this figure.
Fig. 7
Fig. 7 (a) Calculated λ0 for the straight DSF (i.e. Rb = ∞) as a function of rc while varying proportionally the other geometrical parameters (i.e. ri and ro). Points A and B correspond to a fiber model with λ0 = 1546.48 nm for rc = 1.7 and 2.1 µm respectively. (b) Calculated λ0 as a function of ri (rc = 2.1 µm and rori = 2 µm) for Rb = 10, 1.5 and 1.0 cm. The vertical line corresponds to ri = 4.6 µm that is in agreement with our experiments.
Fig. 8
Fig. 8 Calculated percentage variation for λ0 (|100Δλ0/ λ 0 |) and high-order dispersion coefficients (|100Δ β n / β n |) as a function of Rb for x–polarization. The reference dispersion parameters for the straight fiber are λ 0 = 1546.48 nm, β 3 = 0.114 ps3/km, β 4 = – 5.4x10−4 ps4/km and Ω 34 = – 213 ps−1.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S( ω )2 γ 2 S p 2 Δ ω p L 2 Δ P l sin c 2 ( Δβ(ω)L 2 ),
Δβ=β( ω )+β( ω l )β( ω c )β( ω+ ω l ω c ),
β 4c 12 ( ω c ω l ) 2 = β 2c ,
β 2c = β 3 ( ω c ω 0 )+ β 4 2 ( ω c ω 0 ) 2 ,     β 4c = β 4 .  
ω FWM =f( ω l , ω 0 , Ω 34 ),
Δβ( ω )=Δβ( ω FWM +Ω )ΩΔ β ' ,
ΔΩ 16π L β 3 ( ω FWM ω l ) 2 .
n t ( u )= n b ( x )exp( u R b ),
n b ( x )= n s ( x ){ 1 n s ( x ) 2 ρ 2 R b [ P 12 ν( P 11 + P 12 ) ] },

Metrics