Abstract

Within the accuracy of the first-order Born approximation, expressions are derived for the cross-spectral density matrix of the electromagnetic field scattered from a three-dimensional (3D), spatially anisotropic medium. By using the analytical forms of the spectral degree of polarization (SDOP), semi-major axis, semi-minor axis, and orientation angle of the polarization ellipse, we illustrate the evolution properties of the polarization states of the far-zone scattered field. Dependences of the polarization ellipses on different combinations of correlation lengths of the medium and polarization of incident plane wave are also revealed through numerical simulations. It is shown that the polarization ellipse of the scattered field can be either stretched or squeezed along certain scattering angles, strongly depending on the anisotropic statistics of medium and polarization of incident plane wave. Our results substantially enrich the study on the reciprocal relations between the far-zone scattered properties and correlation statistics of a spatially anisotropic medium.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media

Jia Li, Pinghui Wu, and Liping Chang
Opt. Express 23(17) 22123-22133 (2015)

Optical beam propagation in soft anisotropic biological tissues

Xi Chen and Olga Korotkova
OSA Continuum 1(3) 1055-1067 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Foley and E. Wolf, “Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources,” Opt. Commun. 55(4), 236–241 (1985).
    [Crossref]
  2. J. T. Foley and E. Wolf, “Radiance functions of partially coherent fields,” J. Mod. Opt. 38(10), 2053–2068 (1991).
    [Crossref]
  3. J. T. Foley and E. Wolf, “Radiometry with quasihomogeneous sources,” J. Mod. Opt. 42(4), 787–798 (1995).
    [Crossref]
  4. T. D. Visser, D. G. Fischer, and E. Wolf, “Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23(7), 1631–1638 (2006).
    [Crossref] [PubMed]
  5. Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278(2), 247–252 (2007).
    [Crossref]
  6. T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
    [Crossref] [PubMed]
  7. T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010).
    [Crossref] [PubMed]
  8. J. Li, “Determination of correlation function of scattering potential of random medium by Gauss vortex beam,” Opt. Commun. 308(1), 164–168 (2013).
    [Crossref]
  9. C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376(42–43), 2697–2702 (2012).
    [Crossref]
  10. J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
    [Crossref]
  11. J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41(11), 2616–2619 (2016).
    [Crossref] [PubMed]
  12. J. Li, P. Wu, Y. Qin, and S. Guo, “Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium,” IEEE Photonics J. 8(2), 1–13 (2016).
    [Crossref]
  13. J. Li, F. Chen, and L. Chang, “Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium,” Opt. Express 24(21), 24274–24286 (2016).
    [Crossref] [PubMed]
  14. J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380(37), 2999–3006 (2016).
    [Crossref]
  15. Y. Zhang and D. Zhao, “The coherence and polarization properties of electromagnetic rectangular Gaussian Schell-model sources scattered by a deterministic medium,” J. Opt. 16(12), 125709 (2014).
    [Crossref]
  16. T. Wang and D. Zhao, “Polarization-induced coherence changes of an electromagnetic light wave on scattering,” Opt. Lett. 35(18), 3108–3110 (2010).
    [Crossref] [PubMed]
  17. A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23(17), 1340–1342 (1998).
    [Crossref] [PubMed]
  18. X. Peng, D. Ye, M. Zhou, Y. Xin, and M. Song, “Far-zone coherence changes of electromagnetic scattered field generated by an anisotropic particulate medium,” J. Opt. Soc. Am. A 34(8), 1322–1328 (2017).
    [Crossref] [PubMed]
  19. Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
    [Crossref]
  20. T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
    [Crossref] [PubMed]
  21. E. Wolf, “Far-zone spectral isotropy in weak scattering on spatially random media,” J. Opt. Soc. Am. A 14(10), 2820–2823 (1997).
    [Crossref]
  22. T. Wang and D. Zhao, “Condition for far-zone spectral isotropy of an electromagnetic light wave on weak scattering,” Opt. Lett. 36(3), 328–330 (2011).
    [Crossref] [PubMed]
  23. J. Li, P. Wu, and L. Chang, “Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium,” J. Quant. Spectrosc. Radiat. Transf. 170, 142–149 (2016).
    [Crossref]
  24. J. Li, P. Wu, and L. Chang, “Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media,” Opt. Express 23(17), 22123–22133 (2015).
    [Crossref] [PubMed]
  25. E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5–6), 263–267 (2003).
    [Crossref]
  26. O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246(1–3), 35–43 (2005).
    [Crossref]
  27. E. Wolf, Introduction to the theory of coherence and polarization of light, Cambridge university press, 2007.
  28. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7(5), 941–951 (1998).
    [Crossref]
  29. J. Tervo, T. Setälä, and A. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11(10), 1137–1143 (2003).
    [Crossref] [PubMed]
  30. P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13(16), 6051–6060 (2005).
    [Crossref] [PubMed]
  31. A. Luis, “Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices,” J. Opt. Soc. Am. A 24(4), 1063–1068 (2007).
    [Crossref] [PubMed]
  32. F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young’s fringe visibility through reversible optical transformations,” Opt. Lett. 32(6), 588–590 (2007).
    [Crossref] [PubMed]
  33. R. Martínez-Herrero and P. M. Mejías, “Relation between degrees of coherence for electromagnetic fields,” Opt. Lett. 32(11), 1504–1506 (2007).
    [Crossref] [PubMed]
  34. E. Wolf, “Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?” Opt. Lett. 33(7), 642–644 (2008).
    [Crossref] [PubMed]
  35. E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56(13), 1370–1372 (1986).
    [Crossref] [PubMed]
  36. D. F. V. James, “Change of polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11(5), 1641–1643 (1994).
    [Crossref]
  37. O. Korotkova, “Changes in the intensity fluctuations of a class of random electromagnetic beams on propagation,” J. Opt. A, Pure Appl. Opt. 8(1), 30–37 (2006).
    [Crossref]
  38. J. Pu, O. Korotkova, and E. Wolf, “Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation,” Opt. Lett. 31(14), 2097–2099 (2006).
    [Crossref] [PubMed]
  39. J. Pu, O. Korotkova, and E. Wolf, “Polarization-induced spectral changes on propagation of stochastic electromagnetic beams,” Phys. Rev. E 75(5), 056610 (2007).
    [Crossref] [PubMed]
  40. M. Santarsiero, “Polarization invariance in a Young interferometer,” J. Opt. Soc. Am. A 24(11), 3493–3499 (2007).
    [Crossref] [PubMed]
  41. T. Hassinen, J. Tervo, and A. T. Friberg, “Purity of partial polarization in the frequency and time domains,” Opt. Lett. 38(8), 1221–1223 (2013).
    [Crossref] [PubMed]
  42. X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
    [Crossref]
  43. O. Korotkova, “Sufficient condition for polarization invariance of beams generated by quasi-homogeneous sources,” Opt. Lett. 36(19), 3768–3770 (2011).
    [Crossref] [PubMed]
  44. Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
    [Crossref]
  45. D. Zhao, O. Korotkova, and E. Wolf, “Application of correlation-induced spectral changes to inverse scattering,” Opt. Lett. 32(24), 3483–3485 (2007).
    [Crossref] [PubMed]
  46. O. Korotkova, L. Ahad, and T. Setälä, “Three-dimensional electromagnetic Gaussian Schell-model sources,” Opt. Lett. 42(9), 1792–1795 (2017).
    [Crossref] [PubMed]
  47. M. W. Hyde, S. R. Bose-Pillai, and O. Korotkova, “Monte Carlo simulations of three-dimensional electromagnetic Gaussian Schell-model sources,” Opt. Express 26(3), 2303–2313 (2018).
    [Crossref] [PubMed]
  48. O. Korotkova, “Polarization properties of three-dimensional electromagnetic Gaussian Schell-model sources,” Comput. Opt. 41(6), 791–795 (2017).
    [Crossref]

2018 (1)

2017 (4)

O. Korotkova, “Polarization properties of three-dimensional electromagnetic Gaussian Schell-model sources,” Comput. Opt. 41(6), 791–795 (2017).
[Crossref]

X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
[Crossref]

O. Korotkova, L. Ahad, and T. Setälä, “Three-dimensional electromagnetic Gaussian Schell-model sources,” Opt. Lett. 42(9), 1792–1795 (2017).
[Crossref] [PubMed]

X. Peng, D. Ye, M. Zhou, Y. Xin, and M. Song, “Far-zone coherence changes of electromagnetic scattered field generated by an anisotropic particulate medium,” J. Opt. Soc. Am. A 34(8), 1322–1328 (2017).
[Crossref] [PubMed]

2016 (5)

J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41(11), 2616–2619 (2016).
[Crossref] [PubMed]

J. Li, P. Wu, Y. Qin, and S. Guo, “Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium,” IEEE Photonics J. 8(2), 1–13 (2016).
[Crossref]

J. Li, F. Chen, and L. Chang, “Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium,” Opt. Express 24(21), 24274–24286 (2016).
[Crossref] [PubMed]

J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380(37), 2999–3006 (2016).
[Crossref]

J. Li, P. Wu, and L. Chang, “Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium,” J. Quant. Spectrosc. Radiat. Transf. 170, 142–149 (2016).
[Crossref]

2015 (1)

2014 (1)

Y. Zhang and D. Zhao, “The coherence and polarization properties of electromagnetic rectangular Gaussian Schell-model sources scattered by a deterministic medium,” J. Opt. 16(12), 125709 (2014).
[Crossref]

2013 (3)

J. Li, “Determination of correlation function of scattering potential of random medium by Gauss vortex beam,” Opt. Commun. 308(1), 164–168 (2013).
[Crossref]

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

T. Hassinen, J. Tervo, and A. T. Friberg, “Purity of partial polarization in the frequency and time domains,” Opt. Lett. 38(8), 1221–1223 (2013).
[Crossref] [PubMed]

2012 (1)

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376(42–43), 2697–2702 (2012).
[Crossref]

2011 (2)

2010 (6)

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
[Crossref] [PubMed]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010).
[Crossref] [PubMed]

T. Wang and D. Zhao, “Polarization-induced coherence changes of an electromagnetic light wave on scattering,” Opt. Lett. 35(18), 3108–3110 (2010).
[Crossref] [PubMed]

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
[Crossref] [PubMed]

2008 (1)

2007 (7)

2006 (3)

2005 (2)

P. Réfrégier and F. Goudail, “Invariant degrees of coherence of partially polarized light,” Opt. Express 13(16), 6051–6060 (2005).
[Crossref] [PubMed]

O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246(1–3), 35–43 (2005).
[Crossref]

2003 (2)

J. Tervo, T. Setälä, and A. Friberg, “Degree of coherence for electromagnetic fields,” Opt. Express 11(10), 1137–1143 (2003).
[Crossref] [PubMed]

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5–6), 263–267 (2003).
[Crossref]

1998 (2)

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7(5), 941–951 (1998).
[Crossref]

A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23(17), 1340–1342 (1998).
[Crossref] [PubMed]

1997 (1)

1995 (1)

J. T. Foley and E. Wolf, “Radiometry with quasihomogeneous sources,” J. Mod. Opt. 42(4), 787–798 (1995).
[Crossref]

1994 (1)

1991 (1)

J. T. Foley and E. Wolf, “Radiance functions of partially coherent fields,” J. Mod. Opt. 38(10), 2053–2068 (1991).
[Crossref]

1986 (1)

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56(13), 1370–1372 (1986).
[Crossref] [PubMed]

1985 (1)

J. T. Foley and E. Wolf, “Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources,” Opt. Commun. 55(4), 236–241 (1985).
[Crossref]

Ahad, L.

Borghi, R.

F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young’s fringe visibility through reversible optical transformations,” Opt. Lett. 32(6), 588–590 (2007).
[Crossref] [PubMed]

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7(5), 941–951 (1998).
[Crossref]

Bose-Pillai, S. R.

Cai, Y.

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376(42–43), 2697–2702 (2012).
[Crossref]

Chang, L.

Chen, F.

J. Li, F. Chen, and L. Chang, “Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium,” Opt. Express 24(21), 24274–24286 (2016).
[Crossref] [PubMed]

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

Chen, J.

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

Chen, Y.

X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
[Crossref]

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278(2), 247–252 (2007).
[Crossref]

Ding, C.

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376(42–43), 2697–2702 (2012).
[Crossref]

Dogariu, A.

Fischer, D. G.

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010).
[Crossref] [PubMed]

T. D. Visser, D. G. Fischer, and E. Wolf, “Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23(7), 1631–1638 (2006).
[Crossref] [PubMed]

Foley, J. T.

J. T. Foley and E. Wolf, “Radiometry with quasihomogeneous sources,” J. Mod. Opt. 42(4), 787–798 (1995).
[Crossref]

J. T. Foley and E. Wolf, “Radiance functions of partially coherent fields,” J. Mod. Opt. 38(10), 2053–2068 (1991).
[Crossref]

J. T. Foley and E. Wolf, “Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources,” Opt. Commun. 55(4), 236–241 (1985).
[Crossref]

Friberg, A.

Friberg, A. T.

Gori, F.

F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young’s fringe visibility through reversible optical transformations,” Opt. Lett. 32(6), 588–590 (2007).
[Crossref] [PubMed]

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7(5), 941–951 (1998).
[Crossref]

Goudail, F.

Guattari, G.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7(5), 941–951 (1998).
[Crossref]

Guo, S.

J. Li, P. Wu, Y. Qin, and S. Guo, “Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium,” IEEE Photonics J. 8(2), 1–13 (2016).
[Crossref]

Hassinen, T.

Hyde, M. W.

James, D. F. V.

Korotkova, O.

M. W. Hyde, S. R. Bose-Pillai, and O. Korotkova, “Monte Carlo simulations of three-dimensional electromagnetic Gaussian Schell-model sources,” Opt. Express 26(3), 2303–2313 (2018).
[Crossref] [PubMed]

O. Korotkova, L. Ahad, and T. Setälä, “Three-dimensional electromagnetic Gaussian Schell-model sources,” Opt. Lett. 42(9), 1792–1795 (2017).
[Crossref] [PubMed]

O. Korotkova, “Polarization properties of three-dimensional electromagnetic Gaussian Schell-model sources,” Comput. Opt. 41(6), 791–795 (2017).
[Crossref]

J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41(11), 2616–2619 (2016).
[Crossref] [PubMed]

O. Korotkova, “Sufficient condition for polarization invariance of beams generated by quasi-homogeneous sources,” Opt. Lett. 36(19), 3768–3770 (2011).
[Crossref] [PubMed]

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

J. Pu, O. Korotkova, and E. Wolf, “Polarization-induced spectral changes on propagation of stochastic electromagnetic beams,” Phys. Rev. E 75(5), 056610 (2007).
[Crossref] [PubMed]

D. Zhao, O. Korotkova, and E. Wolf, “Application of correlation-induced spectral changes to inverse scattering,” Opt. Lett. 32(24), 3483–3485 (2007).
[Crossref] [PubMed]

J. Pu, O. Korotkova, and E. Wolf, “Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation,” Opt. Lett. 31(14), 2097–2099 (2006).
[Crossref] [PubMed]

O. Korotkova, “Changes in the intensity fluctuations of a class of random electromagnetic beams on propagation,” J. Opt. A, Pure Appl. Opt. 8(1), 30–37 (2006).
[Crossref]

O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246(1–3), 35–43 (2005).
[Crossref]

Li, J.

J. Li, P. Wu, and L. Chang, “Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium,” J. Quant. Spectrosc. Radiat. Transf. 170, 142–149 (2016).
[Crossref]

J. Li, P. Wu, Y. Qin, and S. Guo, “Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium,” IEEE Photonics J. 8(2), 1–13 (2016).
[Crossref]

J. Li, F. Chen, and L. Chang, “Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium,” Opt. Express 24(21), 24274–24286 (2016).
[Crossref] [PubMed]

J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41(11), 2616–2619 (2016).
[Crossref] [PubMed]

J. Li, P. Wu, and L. Chang, “Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media,” Opt. Express 23(17), 22123–22133 (2015).
[Crossref] [PubMed]

J. Li, “Determination of correlation function of scattering potential of random medium by Gauss vortex beam,” Opt. Commun. 308(1), 164–168 (2013).
[Crossref]

Luis, A.

Martínez-Herrero, R.

Mejías, P. M.

Pan, L.

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376(42–43), 2697–2702 (2012).
[Crossref]

Peng, X.

X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
[Crossref]

X. Peng, D. Ye, M. Zhou, Y. Xin, and M. Song, “Far-zone coherence changes of electromagnetic scattered field generated by an anisotropic particulate medium,” J. Opt. Soc. Am. A 34(8), 1322–1328 (2017).
[Crossref] [PubMed]

Pu, J.

J. Pu, O. Korotkova, and E. Wolf, “Polarization-induced spectral changes on propagation of stochastic electromagnetic beams,” Phys. Rev. E 75(5), 056610 (2007).
[Crossref] [PubMed]

J. Pu, O. Korotkova, and E. Wolf, “Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation,” Opt. Lett. 31(14), 2097–2099 (2006).
[Crossref] [PubMed]

Qin, Y.

J. Li, P. Wu, Y. Qin, and S. Guo, “Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium,” IEEE Photonics J. 8(2), 1–13 (2016).
[Crossref]

Réfrégier, P.

Santarsiero, M.

Setälä, T.

Shao, Y.

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

Song, M.

X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
[Crossref]

X. Peng, D. Ye, M. Zhou, Y. Xin, and M. Song, “Far-zone coherence changes of electromagnetic scattered field generated by an anisotropic particulate medium,” J. Opt. Soc. Am. A 34(8), 1322–1328 (2017).
[Crossref] [PubMed]

Tervo, J.

Tong, Z.

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

van Dijk, T.

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010).
[Crossref] [PubMed]

Vicalvi, S.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7(5), 941–951 (1998).
[Crossref]

Visser, T. D.

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010).
[Crossref] [PubMed]

T. D. Visser, D. G. Fischer, and E. Wolf, “Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23(7), 1631–1638 (2006).
[Crossref] [PubMed]

Wang, T.

Wolf, E.

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010).
[Crossref] [PubMed]

E. Wolf, “Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?” Opt. Lett. 33(7), 642–644 (2008).
[Crossref] [PubMed]

D. Zhao, O. Korotkova, and E. Wolf, “Application of correlation-induced spectral changes to inverse scattering,” Opt. Lett. 32(24), 3483–3485 (2007).
[Crossref] [PubMed]

J. Pu, O. Korotkova, and E. Wolf, “Polarization-induced spectral changes on propagation of stochastic electromagnetic beams,” Phys. Rev. E 75(5), 056610 (2007).
[Crossref] [PubMed]

T. D. Visser, D. G. Fischer, and E. Wolf, “Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23(7), 1631–1638 (2006).
[Crossref] [PubMed]

J. Pu, O. Korotkova, and E. Wolf, “Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation,” Opt. Lett. 31(14), 2097–2099 (2006).
[Crossref] [PubMed]

O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246(1–3), 35–43 (2005).
[Crossref]

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5–6), 263–267 (2003).
[Crossref]

A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23(17), 1340–1342 (1998).
[Crossref] [PubMed]

E. Wolf, “Far-zone spectral isotropy in weak scattering on spatially random media,” J. Opt. Soc. Am. A 14(10), 2820–2823 (1997).
[Crossref]

J. T. Foley and E. Wolf, “Radiometry with quasihomogeneous sources,” J. Mod. Opt. 42(4), 787–798 (1995).
[Crossref]

J. T. Foley and E. Wolf, “Radiance functions of partially coherent fields,” J. Mod. Opt. 38(10), 2053–2068 (1991).
[Crossref]

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56(13), 1370–1372 (1986).
[Crossref] [PubMed]

J. T. Foley and E. Wolf, “Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources,” Opt. Commun. 55(4), 236–241 (1985).
[Crossref]

Wu, P.

J. Li, P. Wu, Y. Qin, and S. Guo, “Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium,” IEEE Photonics J. 8(2), 1–13 (2016).
[Crossref]

J. Li, P. Wu, and L. Chang, “Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium,” J. Quant. Spectrosc. Radiat. Transf. 170, 142–149 (2016).
[Crossref]

J. Li, P. Wu, and L. Chang, “Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media,” Opt. Express 23(17), 22123–22133 (2015).
[Crossref] [PubMed]

Xin, Y.

X. Peng, D. Ye, M. Zhou, Y. Xin, and M. Song, “Far-zone coherence changes of electromagnetic scattered field generated by an anisotropic particulate medium,” J. Opt. Soc. Am. A 34(8), 1322–1328 (2017).
[Crossref] [PubMed]

X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
[Crossref]

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278(2), 247–252 (2007).
[Crossref]

Ye, D.

X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
[Crossref]

X. Peng, D. Ye, M. Zhou, Y. Xin, and M. Song, “Far-zone coherence changes of electromagnetic scattered field generated by an anisotropic particulate medium,” J. Opt. Soc. Am. A 34(8), 1322–1328 (2017).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang and D. Zhao, “The coherence and polarization properties of electromagnetic rectangular Gaussian Schell-model sources scattered by a deterministic medium,” J. Opt. 16(12), 125709 (2014).
[Crossref]

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376(42–43), 2697–2702 (2012).
[Crossref]

Zhao, D.

Zhao, Q.

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278(2), 247–252 (2007).
[Crossref]

Zhou, J.

J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380(37), 2999–3006 (2016).
[Crossref]

Zhou, M.

X. Peng, D. Ye, M. Zhou, Y. Xin, and M. Song, “Far-zone coherence changes of electromagnetic scattered field generated by an anisotropic particulate medium,” J. Opt. Soc. Am. A 34(8), 1322–1328 (2017).
[Crossref] [PubMed]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278(2), 247–252 (2007).
[Crossref]

Comput. Opt. (1)

O. Korotkova, “Polarization properties of three-dimensional electromagnetic Gaussian Schell-model sources,” Comput. Opt. 41(6), 791–795 (2017).
[Crossref]

IEEE Photonics J. (1)

J. Li, P. Wu, Y. Qin, and S. Guo, “Spectrum changes produced by scattering of light with tunable spectral degree of coherence from a spatially deterministic medium,” IEEE Photonics J. 8(2), 1–13 (2016).
[Crossref]

J. Mod. Opt. (2)

J. T. Foley and E. Wolf, “Radiance functions of partially coherent fields,” J. Mod. Opt. 38(10), 2053–2068 (1991).
[Crossref]

J. T. Foley and E. Wolf, “Radiometry with quasihomogeneous sources,” J. Mod. Opt. 42(4), 787–798 (1995).
[Crossref]

J. Opt. (1)

Y. Zhang and D. Zhao, “The coherence and polarization properties of electromagnetic rectangular Gaussian Schell-model sources scattered by a deterministic medium,” J. Opt. 16(12), 125709 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

O. Korotkova, “Changes in the intensity fluctuations of a class of random electromagnetic beams on propagation,” J. Opt. A, Pure Appl. Opt. 8(1), 30–37 (2006).
[Crossref]

J. Opt. Soc. Am. A (6)

J. Quant. Spectrosc. Radiat. Transf. (2)

J. Chen, F. Chen, Y. Chen, Y. Xin, Y. Shao, and Q. Zhao, “Polarization-induced coherence changes and conditions for the invariance of the spectral degree of coherence produced by an electromagnetic wave scattering on a collection of particles,” J. Quant. Spectrosc. Radiat. Transf. 131, 66–71 (2013).
[Crossref]

J. Li, P. Wu, and L. Chang, “Conditions for invariant spectrum of light generated by scattering of partially coherent wave from quasi-homogeneous medium,” J. Quant. Spectrosc. Radiat. Transf. 170, 142–149 (2016).
[Crossref]

Opt. Commun. (4)

O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246(1–3), 35–43 (2005).
[Crossref]

J. Li, “Determination of correlation function of scattering potential of random medium by Gauss vortex beam,” Opt. Commun. 308(1), 164–168 (2013).
[Crossref]

Y. Xin, Y. Chen, Q. Zhao, and M. Zhou, “Beam radiated from quasi-homogeneous uniformly polarized electromagnetic source scattering on quasi-homogeneous media,” Opt. Commun. 278(2), 247–252 (2007).
[Crossref]

J. T. Foley and E. Wolf, “Radiometry as a short-wavelength limit of statistical wave theory with globally incoherent sources,” Opt. Commun. 55(4), 236–241 (1985).
[Crossref]

Opt. Express (5)

Opt. Lett. (14)

D. Zhao, O. Korotkova, and E. Wolf, “Application of correlation-induced spectral changes to inverse scattering,” Opt. Lett. 32(24), 3483–3485 (2007).
[Crossref] [PubMed]

O. Korotkova, L. Ahad, and T. Setälä, “Three-dimensional electromagnetic Gaussian Schell-model sources,” Opt. Lett. 42(9), 1792–1795 (2017).
[Crossref] [PubMed]

T. Hassinen, J. Tervo, and A. T. Friberg, “Purity of partial polarization in the frequency and time domains,” Opt. Lett. 38(8), 1221–1223 (2013).
[Crossref] [PubMed]

O. Korotkova, “Sufficient condition for polarization invariance of beams generated by quasi-homogeneous sources,” Opt. Lett. 36(19), 3768–3770 (2011).
[Crossref] [PubMed]

T. Wang and D. Zhao, “Condition for far-zone spectral isotropy of an electromagnetic light wave on weak scattering,” Opt. Lett. 36(3), 328–330 (2011).
[Crossref] [PubMed]

F. Gori, M. Santarsiero, and R. Borghi, “Maximizing Young’s fringe visibility through reversible optical transformations,” Opt. Lett. 32(6), 588–590 (2007).
[Crossref] [PubMed]

R. Martínez-Herrero and P. M. Mejías, “Relation between degrees of coherence for electromagnetic fields,” Opt. Lett. 32(11), 1504–1506 (2007).
[Crossref] [PubMed]

E. Wolf, “Can a light beam be considered to be the sum of a completely polarized and a completely unpolarized beam?” Opt. Lett. 33(7), 642–644 (2008).
[Crossref] [PubMed]

J. Pu, O. Korotkova, and E. Wolf, “Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation,” Opt. Lett. 31(14), 2097–2099 (2006).
[Crossref] [PubMed]

T. Wang and D. Zhao, “Polarization-induced coherence changes of an electromagnetic light wave on scattering,” Opt. Lett. 35(18), 3108–3110 (2010).
[Crossref] [PubMed]

A. Dogariu and E. Wolf, “Spectral changes produced by static scattering on a system of particles,” Opt. Lett. 23(17), 1340–1342 (1998).
[Crossref] [PubMed]

T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
[Crossref] [PubMed]

T. Wang and D. Zhao, “Scattering theory of stochastic electromagnetic light waves,” Opt. Lett. 35(14), 2412–2414 (2010).
[Crossref] [PubMed]

J. Li and O. Korotkova, “Scattering of light from a stationary nonuniformly correlated medium,” Opt. Lett. 41(11), 2616–2619 (2016).
[Crossref] [PubMed]

Optik (Stuttg.) (1)

X. Peng, D. Ye, Y. Xin, Y. Chen, and M. Song, “Cross-spectral purity of Stokes parameters, purity of partial polarization and statistical similarity,” Optik (Stuttg.) 145, 42–48 (2017).
[Crossref]

Phys. Lett. A (3)

C. Ding, Y. Cai, Y. Zhang, and L. Pan, “Scattering of a partially coherent plane-wave pulse on a deterministic sphere,” Phys. Lett. A 376(42–43), 2697–2702 (2012).
[Crossref]

J. Zhou and D. Zhao, “Scattering of an electromagnetic light wave from a quasi-homogeneous medium with semisoft boundary,” Phys. Lett. A 380(37), 2999–3006 (2016).
[Crossref]

E. Wolf, “Unified theory of coherence and polarization of random electromagnetic beams,” Phys. Lett. A 312(5–6), 263–267 (2003).
[Crossref]

Phys. Rev. A (2)

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

Z. Tong and O. Korotkova, “Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media,” Phys. Rev. A 82(3), 033836 (2010).
[Crossref]

Phys. Rev. E (1)

J. Pu, O. Korotkova, and E. Wolf, “Polarization-induced spectral changes on propagation of stochastic electromagnetic beams,” Phys. Rev. E 75(5), 056610 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56(13), 1370–1372 (1986).
[Crossref] [PubMed]

T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104(17), 173902 (2010).
[Crossref] [PubMed]

Pure Appl. Opt. (1)

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, “Beam coherence-polarization matrix,” Pure Appl. Opt. 7(5), 941–951 (1998).
[Crossref]

Other (1)

E. Wolf, Introduction to the theory of coherence and polarization of light, Cambridge university press, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram for illustrating the scattering of a plane wave from a 3D medium in spherical coordinate.
Fig. 2
Fig. 2 Evolutions of the SDOPs and polarization ellipses of the far-zone scattered field with the azimuthal and polar scattering angles θ and ϕ. The correlation lengths of the anisotropic medium are chosen as: δ yy =0.3λ, δ zz =0.4λ, δ xy = δ xz = δ yz =0.1λ.
Fig. 3
Fig. 3 Evolutions of the SDOPs and polarization ellipses of the far-zone scattered field with the azimuthal and polar scattering angles θ and ϕ. The correlation lengths of the anisotropic medium are chosen as: δ xx =0.2λ, δ zz =0.4λ, δ xy = δ xz = δ yz =0.1λ.
Fig. 4
Fig. 4 Evolutions of the SDOPs and polarization ellipses of the far-zone scattered field with the azimuthal and polar scattering angles θ and ϕ. The correlation lengths of the anisotropic medium are chosen as: δ xx =0.2λ, δ yy =0.3λ, δ xy = δ xz = δ yz =0.1λ.
Fig. 5
Fig. 5 Evolutions of the SDOPs and polarization ellipses of the far-zone scattered field with the azimuthal and polar scattering angles θ and ϕ. The correlation lengths of the anisotropic medium are chosen as: δ xx =0.2λ, δ yy =0.3λ, δ zz =0.4λ, δ xz = δ yz =0.1λ.
Fig. 6
Fig. 6 Evolutions of the SDOPs and polarization ellipses of the far-zone scattered field with the azimuthal and polar scattering angles θ and ϕ. The correlation lengths of the anisotropic medium are chosen as: δ xx =0.2λ, δ yy =0.3λ, δ zz =0.4λ, δ xy = δ yz =0.1λ.
Fig. 7
Fig. 7 Evolutions of the SDOPs and polarization ellipses of the far-zone scattered field with the azimuthal and polar scattering angles θ and ϕ. The correlation lengths of the anisotropic medium are chosen as: δ xx =0.2λ, δ yy =0.3λ, δ zz =0.4λ, δ xy = δ xz =0.1λ.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

{ E x (i) (r',ω)= a x exp(ik s 0 r') E y (i) (r',ω)= a y exp(ik s 0 r')exp(iΔφ) ,
s x =sinθcosϕ, s y =sinθsinϕ, s z =cosθ,
E (s) (rs,ω)= D G(r',rs,ω)F(r',ω)S(θ,ϕ) E (i) (r',ω) d 3 r',
S(θ,ϕ)=[ 1 s x 2 s x s y 0 s y s x 1 s y 2 0 s z s x s z s y 0 ],
E (i) (r',ω)=[ E x (i) (r',ω) E y (i) (r',ω) 0 ]=[ a x exp( ik s 0 r' ) a y exp( ik s 0 r'+iΔφ ) 0 ],
F(r',ω)=[ F x (r',ω) 0 0 0 F y (r',ω) 0 0 0 F z (r',ω) ].
G(r',rs,ω) exp(ikr) r exp(iksr').
W( r 1 , r 2 ,ω)[ W nm ( r 1 , r 2 ,ω) ]=[ E n * ( r 1 ,ω) E m ( r 2 ,ω) ],(n,m=x,y,z),
W( r 1 s 1 , r 2 s 2 ,ω)= exp[ik( r 2 r 1 )] r 1 r 2 D D S( θ 1 , ϕ 1 ) W (i) ( r 1 ', r 2 ',ω) [S( θ 2 , ϕ 2 )] T C (F) ( r 1 ', r 2 ',ω)exp[ik( s 2 r 2 ' s 1 r 1 ')] d 3 r 1 'd 3 r 2 ',
C nm (F) ( r 1 ', r 2 ',ω)= F n * ( r 1 ',ω) F m ( r 2 ',ω) ,(n,m=x,y,z).
W (i) ( r 1 ', r 2 ',ω)=[ a x 2 exp[ik s 0 ( r 2 ' r 1 ')] a x a y e iΔφ exp[ik s 0 ( r 2 ' r 1 ')] 0 a x a y e -iΔφ exp[ik s 0 ( r 2 ' r 1 ')] a y 2 exp[ik s 0 ( r 2 ' r 1 ')] 0 0 0 0 ] =A(Δφ)exp[ik s 0 ( r 2 ' r 1 ')],
A(Δφ)=[ a x 2 a x a y e iΔφ 0 a x a y e -iΔφ a y 2 0 0 0 0 ]
W( r 1 s 1 , r 2 s 2 ,ω)= exp[ik( r 2 r 1 )] r 1 r 2 M( θ 1 , ϕ 1 , θ 2 , ϕ 2 ,Δφ) C ˜ (F) [k( s 1 s 0 ),k( s 2 s 0 ),ω],
M( θ 1 , ϕ 1 , θ 2 , ϕ 2 ,Δφ)=S( θ 1 , ϕ 1 )A(Δφ) [S( θ 2 , ϕ 2 )] T
C ˜ nm (F) ( K 1 , K 2 ,ω)= D D C nm (F) ( r 1 ', r 2 ',ω) exp[i K 1 r 1 'i K 2 r 2 '] d 3 r 1 'd 3 r 2 ',(n,m=x,y,z)
K 1 =k( s 1 s 0 ), K 2 =k( s 2 s 0 ).
W(r,r,ω)= 1 r 2 M(θ,ϕ,Δφ)* C ˜ (F) (K,K,ω).
W θϕ (r,r,ω)=T(θ,ϕ)W(r,r,ω) [T(θ,ϕ)] T ,
T(θ,ϕ)=[ cosθcosϕ sinϕ cosθsinϕ cosϕ sinθ 0 ].
P θϕ (r,ω)= 1 4Det[ W θϕ (r,r,ω)] { Tr[ W θϕ (r,r,ω)] } 2 = 1 4 W θθ (r,r,ω) W ϕϕ (r,r,ω)4 | W θϕ (r,r,ω) | 2 [ W θθ (r,r,ω)+ W ϕϕ (r,r,ω)] 2 ,
A major 2 = [ ( W θθ ( r,r,ω ) W ϕϕ ( r,r,ω ) ) 2 +4 | W θϕ ( r,r,ω ) | 2 + ( W θθ ( r,r,ω ) W ϕϕ ( r,r,ω ) ) 2 +4 [ Re( W θϕ ( r,r,ω ) ) ] 2 ]/2,
A minor 2 = [ ( W θθ ( r,r,ω ) W ϕϕ ( r,r,ω ) ) 2 +4 | W θϕ ( r,r,ω ) | 2 ( W θθ ( r,r,ω ) W ϕϕ ( r,r,ω ) ) 2 +4 [ Re( W θϕ ( r,r,ω ) ) ] 2 ]/2.
α= 1 2 arctan[ 2Re( W θϕ ( r,r,ω ) ) W θθ ( r,r,ω ) W ϕϕ ( r,r,ω ) ].
C nm (F) ( r 1 ', r 2 ',ω)= C nm (F) ( r 2 '- r 1 ' )=exp[ ( r 2 '- r 1 ' ) 2 /2 δ nm 2 ], (n,m=x,y,z).
C ˜ nm (F) (K,ω)= ( δ nm 2π ) 3 exp[ (K δ nm ) 2 /2 ], (n,m=x,y,z).

Metrics