Abstract

A readout using a frequency-chirped laser is investigated in a spectrum analyzer with spectral-hole-burning (SHB). An analysis based on the Bloch equations is presented for the spectral distortion due to a fast readout, and a recovery algorithm is developed for the distortion. The experiment of a SHB spectrum analyzer is executed to demonstrate the optical spectral distortion due to fast readout. The experimental spectral distortion is recovered by the recovery algorithm developed from the Bloch equations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a radio-frequency spectrum analyzer based on spectral hole burning

Loïc Ménager, Ivan Lorgeré, Jean-Louis Le Gouët, Daniel Dolfi, and Jean-Pierre Huignard
Opt. Lett. 26(16) 1245-1247 (2001)

10GHz Bandwidth rf spectral analyzer with megahertz resolution based on spectral-spatial holography in Tm3+:YAG: experimental and theoretical study

Guillaume Gorju, Adrien Chauve, Vincent Crozatier, Ivan Lorgeré, Jean-Louis Le Gouët, and Fabien Bretenaker
J. Opt. Soc. Am. B 24(3) 457-470 (2007)

Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis

F. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt
Opt. Lett. 30(22) 3003-3005 (2005)

References

  • View by:
  • |
  • |
  • |

  1. P. Berger, M. Schwarz, S. Molin, D. Dolfi, L. Morvan, A. Louchet-Chauvet, and J. L. Le Gouët, “20 GHz instantaneous bandwidth RF spectrum analyzer with high time-resolution,” Proc. Int. Topical Meeting Microw. Photon. 331–334 (2014).
    [Crossref]
  2. T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
    [Crossref] [PubMed]
  3. Y. Attal, P. Berger, D. Dolfi, L. Morvan, A. Louchet-Chauvet, and T. Chanelière, “Estimation of the dynamic range of the “rainbow” RF spectrum analyzer,” Proc. Int. Topical Meeting Microw. Photon. 110–113 (2016).
  4. W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
    [Crossref]
  5. J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
    [Crossref]
  6. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  7. G. Gorju, V. Crozatier, J. L. L. Lorgeré Gout, and F. Bretenaker, “10-ghz bandwidth rf spectral analyzer with mhz resolution based on spectral hole burning in tm3+:yag,” IEEE Photonics Technol. Lett. 17(11), 2385–2387 (2005).
    [Crossref]
  8. M. Colice, F. Schlottau, and K. H. Wagner, “Broadband radio-frequency spectrum analysis in spectral-hole-burning media,” Appl. Opt. 45(25), 6393–6408 (2006).
    [Crossref] [PubMed]
  9. G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J. L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32(5), 484–486 (2007).
    [Crossref] [PubMed]
  10. K. S. Repasky and J. L. Carlsten, “Simple method for measuring frequency chirps with a Fabry-Perot interferometer,” Appl. Opt. 39(30), 5500–5504 (2000).
    [Crossref] [PubMed]
  11. E. Schlottau, M. Colice, K. H. Wagner, and W. R. Babbitt, “Spectral hole burning for wideband, high-resolution radio-frequency spectrum analysis,” Opt. Lett. 30(22), 3003–3005 (2005).
    [Crossref] [PubMed]
  12. T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, “Recovery of spectral features readout with frequency-chirped laser fields,” Opt. Lett. 30(10), 1129–1131 (2005).
    [Crossref] [PubMed]
  13. K. Charles, Introduction to Solid State Physics (John Wiley & Sons, 2004).
  14. R. H. Liu, “Light storage protocols in Tm:YAG,” J. Lumin. 130(9), 1572–1578 (2010).
    [Crossref]

2017 (2)

J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
[Crossref]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

2016 (1)

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

2014 (1)

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

2010 (1)

R. H. Liu, “Light storage protocols in Tm:YAG,” J. Lumin. 130(9), 1572–1578 (2010).
[Crossref]

2007 (1)

2006 (1)

2005 (3)

2000 (1)

Babbitt, W. R.

Barber, Z. W.

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

Barclay, P. E.

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Bekker, S. H.

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

Bretenaker, F.

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J. L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32(5), 484–486 (2007).
[Crossref] [PubMed]

G. Gorju, V. Crozatier, J. L. L. Lorgeré Gout, and F. Bretenaker, “10-ghz bandwidth rf spectral analyzer with mhz resolution based on spectral hole burning in tm3+:yag,” IEEE Photonics Technol. Lett. 17(11), 2385–2387 (2005).
[Crossref]

Carlsten, J. L.

Chang, T.

Chase, M. D.

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

Colice, M.

Cone, R. L.

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Crozatier, V.

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J. L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32(5), 484–486 (2007).
[Crossref] [PubMed]

G. Gorju, V. Crozatier, J. L. L. Lorgeré Gout, and F. Bretenaker, “10-ghz bandwidth rf spectral analyzer with mhz resolution based on spectral hole burning in tm3+:yag,” IEEE Photonics Technol. Lett. 17(11), 2385–2387 (2005).
[Crossref]

Gorju, G.

G. Gorju, A. Jucha, A. Jain, V. Crozatier, I. Lorgeré, J. L. Le Gouët, F. Bretenaker, and M. Colice, “Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control,” Opt. Lett. 32(5), 484–486 (2007).
[Crossref] [PubMed]

G. Gorju, V. Crozatier, J. L. L. Lorgeré Gout, and F. Bretenaker, “10-ghz bandwidth rf spectral analyzer with mhz resolution based on spectral hole burning in tm3+:yag,” IEEE Photonics Technol. Lett. 17(11), 2385–2387 (2005).
[Crossref]

Harrington, C.

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

Jain, A.

Jucha, A.

Le Gouët, J. L.

Li, B.

J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
[Crossref]

Liu, R. H.

R. H. Liu, “Light storage protocols in Tm:YAG,” J. Lumin. 130(9), 1572–1578 (2010).
[Crossref]

Liu, R. T.

J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
[Crossref]

Lorgeré, I.

Lorgeré Gout, J. L. L.

G. Gorju, V. Crozatier, J. L. L. Lorgeré Gout, and F. Bretenaker, “10-ghz bandwidth rf spectral analyzer with mhz resolution based on spectral hole burning in tm3+:yag,” IEEE Photonics Technol. Lett. 17(11), 2385–2387 (2005).
[Crossref]

Lutz, T.

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Merkel, K. D.

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

T. Chang, M. Tian, R. K. Mohan, C. Renner, K. D. Merkel, and W. R. Babbitt, “Recovery of spectral features readout with frequency-chirped laser fields,” Opt. Lett. 30(10), 1129–1131 (2005).
[Crossref] [PubMed]

Mohan, R. K.

Pan, S.

Renner, C.

Repasky, K. S.

Schlottau, E.

Schlottau, F.

Song, C.

J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
[Crossref]

Thiel, C. W.

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Tian, M.

Tittel, W.

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Veissier, L.

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Wagner, K. H.

Woidtke, A. J.

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

Woodburn, P. J.

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Yao, J.

Yin, C.

J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
[Crossref]

Zhang, J. W.

J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
[Crossref]

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (1)

G. Gorju, V. Crozatier, J. L. L. Lorgeré Gout, and F. Bretenaker, “10-ghz bandwidth rf spectral analyzer with mhz resolution based on spectral hole burning in tm3+:yag,” IEEE Photonics Technol. Lett. 17(11), 2385–2387 (2005).
[Crossref]

IEEE Trans. Dielectr. Electr. Insul. (1)

J. W. Zhang, C. Yin, C. Song, R. T. Liu, and B. Li, “Numerical simulation and experiments on mono-polar negative corona discharge applied in nanocomposites,” IEEE Trans. Dielectr. Electr. Insul. 24(2), 791–797 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

R. H. Liu, “Light storage protocols in Tm:YAG,” J. Lumin. 130(9), 1572–1578 (2010).
[Crossref]

Laser Phys. (1)

W. R. Babbitt, Z. W. Barber, S. H. Bekker, M. D. Chase, C. Harrington, K. D. Merkel, and A. J. Woidtke, “From spectral holeburning memory to spatial-spectral microwave signal processing,” Laser Phys. 24(9), 094002 (2014).
[Crossref]

Opt. Lett. (3)

Sci. Technol. Adv. Mater. (1)

T. Lutz, L. Veissier, C. W. Thiel, P. J. Woodburn, R. L. Cone, P. E. Barclay, and W. Tittel, “Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped Y3AI5O12powders studied using spectral hole burning,” Sci. Technol. Adv. Mater. 17(1), 63–70 (2016).
[Crossref] [PubMed]

Other (3)

Y. Attal, P. Berger, D. Dolfi, L. Morvan, A. Louchet-Chauvet, and T. Chanelière, “Estimation of the dynamic range of the “rainbow” RF spectrum analyzer,” Proc. Int. Topical Meeting Microw. Photon. 110–113 (2016).

P. Berger, M. Schwarz, S. Molin, D. Dolfi, L. Morvan, A. Louchet-Chauvet, and J. L. Le Gouët, “20 GHz instantaneous bandwidth RF spectrum analyzer with high time-resolution,” Proc. Int. Topical Meeting Microw. Photon. 331–334 (2014).
[Crossref]

K. Charles, Introduction to Solid State Physics (John Wiley & Sons, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup of the fast-chirped readout. RF: Radio frequency signal; EOM: Electro-optic modulator; FC: Fiber Collimator; λ/2: Half waveplate; PBS: Polarizing beam splitter; M1: High reflectivity mirror at 793.4 nm; L1 & L2: lens; BD: Beam dump.
Fig. 2
Fig. 2 Readout signals (blue lines) and recovered signals (red lines) with (a) κ = 1.11 MHz/μs, (b) κ = 3.17 MHz/μs and (c) κ = 5.00 MHz/μs. The normalized readout and recovered signals are plotted as a function of frequency for comparison.
Fig. 3
Fig. 3 Readout (blue line) and recovered (red line) of 200 MHz and 201 MHz radio-frequency signal with κ = 3.17 MHz/μs. The normalized readout and recovered signals are plotted as a function of frequency for comparison.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ dU dt =ΔV U T 2 , dV dt =ΔU+ΩW V T 2 , dW dt =ΩV W W 0 T 1 ,
dP( t ) dt +i( 1 T 2 i( ω 0 bt) )P( t )=iΩ w 0
dK( ω ) dω +ibωK( ω )+( 1 T 2 i ω 0 )K( ω )=i2πΩ w 0 δ( ω )
K( ω )H( ω )exp( 1 2 ib ω 2 )

Metrics