Abstract

A Yb-doped fiber laser is used to accelerate and evaporate absorbing particles in air. Optical intensities of 1MW/cm2 and 2MW/cm2 illuminate stainless steel particles. These particles are accelerated to velocities of tens of meters per second before evaporating within a few tenths of a millisecond. Position measurements are made using direct imaging with a high-speed camera. A fundamental system of coupled differential equations to track particle momentum, velocity, mass, radius, temperature, vapor opacity, and temperature distribution is developed and shown to accurately model the trajectories and lifetimes of laser heated particles. Atoms evaporating from the particle impart momentum to the larger particle, which accelerates until it is slowed by drag forces. Heat transfer within the evaporating particles is dominated by radiation diffusion, a process that usually only dominates in astrophysical objects, for example in the photospheres of stars.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ablative acceleration of small particles to high velocity by focused laser radiation

J. S. Goela and B. D. Green
J. Opt. Soc. Am. B 3(1) 8-14 (1986)

Photophoretic trapping of absorbing particles in air and measurement of their single-particle Raman spectra

Yong-Le Pan, Steven C. Hill, and Mark Coleman
Opt. Express 20(5) 5325-5334 (2012)

Optical levitation of absorbing particles with a nominally Gaussian laser beam

Jan Huisken and Ernst H. K. Stelzer
Opt. Lett. 27(14) 1223-1225 (2002)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
    [Crossref]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  4. A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
    [Crossref] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  6. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Methods Cell Biol. 55, 1–27 (1998).
    [PubMed]
  7. G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
    [Crossref] [PubMed]
  8. M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
    [Crossref]
  9. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17(7), 5743–5757 (2009).
    [Crossref] [PubMed]
  10. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  11. K. A. Prather, T. Nordmeyer, and K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66(9), 1403–1407 (1994).
    [Crossref]
  12. E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
    [Crossref] [PubMed]
  13. P. G. Carson, K. R. Neubauer, M. V. Johnston, and A. S. Wexler, “On-line chemical analysis of aerosols by rapid single-particle mass spectrometry,” J. Aerosol Sci. 26(4), 535–545 (1995).
    [Crossref]
  14. A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 127, 721–725 (1998).
    [Crossref]
  15. W. Zapka, W. Ziemlich, W. P. Leung, and A. C. Tam, “Laser cleaning removes particles from surfaces,” Microelectron. Eng. 20(1–2), 171–183 (1993).
    [Crossref]
  16. G. Vereecke, E. Röhr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
    [Crossref]
  17. T. Mitra, A. K. Brown, and J. J. Talghader, “Micromachined drilling of dielectric substrates of varying badgap using laser accelerated particles,” in Proceedings of IEEE conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2017), pp. 1–2.
  18. F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1995).
    [Crossref]
  19. A. Brown, A. Ogloza, L. Taylor, J. Thomas, and J. Talghader, “Continuous-wave laser damage and conditioning of particle contaminated optics,” Appl. Opt. 54(16), 5216–5222 (2015).
    [Crossref] [PubMed]
  20. R. S. Shah, J. J. Rey, and A. F. Stewart, “Limits of performance: CW laser damage,” Proc. SPIE 6403, 640305 (2006).
    [Crossref]
  21. G. A. Askar’yan and E. M. Moroz, “Pressure on evaporation of matter in a radiation beam,” J. Exp. Theor. Phys. (USSR) 43(6), 2319–2320 (1962).
  22. G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).
  23. V. I. Bukatyi, A. M. Sagalakov, A. A. Tel’nikhin, and A. M. Shaiduk, “Combustion of carbon particles in a powerful optical field,” Combust. Explos. Shock Waves 15(6), 727–731 (1979).
    [Crossref]
  24. V. I. Bukatyi, V. A. Podogaev, and D. P. Chaporov, “Dynamics of a solid microparticle in a pulsed laser radiation field,” J. Appl. Mech. Tech. Phys. 20(1), 22–25 (1979).
    [Crossref]
  25. R. W. Waniek and P. J. Jarmuz, “Acceleration of microparticles by laser-induced vapor emission,” Appl. Phys. Lett. 12(2), 52–54 (1968).
    [Crossref]
  26. J. S. Goela and B. D. Green, “Ablative acceleration of small particles to high velocity by focused laser radiation,” J. Opt. Soc. Am. B 3(1), 8–14 (1986).
    [Crossref]
  27. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009).
    [Crossref] [PubMed]
  28. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer Science & Business Media, 2012).
  29. C. A. Sleicher and S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48(10), 1819–1824 (1956).
    [Crossref]
  30. M. Stephens, N. Turner, and J. Sandberg, “Particle identification by laser-induced incandescence in a solid-state laser cavity,” Appl. Opt. 42(19), 3726–3736 (2003).
    [Crossref] [PubMed]
  31. C. J. Durrant, The Atmosphere of the Sun (Hilger, 1988).
  32. S. J. Blundell and K. M. Blundell, Concepts in Thermal Physics (OUP Oxford, 2009).
  33. H. Schlichting, K. Gersten, E. Krause, and H. Oertel, Boundary-layer Theory (McGraw-hill, 1955).
  34. W. M. Haynes, CRC handbook of Chemistry and Physics (CRC press, 2014).
  35. J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).
  36. H. A. Jones and G. M. Mackay, “The rates of evaporation and the vapor pressures of tungsten, molybdenum, platinum, nickel, iron, copper and silver,” Phys. Rev. 30(2), 201–214 (1927).
    [Crossref]
  37. J. Loschmidt, “On the size of the air molecules,” J. Chem. Educ. 72(10), 870 (1995).
    [Crossref]
  38. M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, “Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths,” Appl. Opt. 27(6), 1203–1209 (1988).
    [Crossref] [PubMed]
  39. T. L. Bergman and F. P. Incropera, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

2016 (1)

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

2015 (1)

2009 (2)

2007 (1)

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

2006 (1)

R. S. Shah, J. J. Rey, and A. F. Stewart, “Limits of performance: CW laser damage,” Proc. SPIE 6403, 640305 (2006).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

2003 (1)

2001 (1)

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
[Crossref] [PubMed]

1999 (1)

G. Vereecke, E. Röhr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

1998 (2)

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 127, 721–725 (1998).
[Crossref]

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Methods Cell Biol. 55, 1–27 (1998).
[PubMed]

1995 (3)

F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1995).
[Crossref]

P. G. Carson, K. R. Neubauer, M. V. Johnston, and A. S. Wexler, “On-line chemical analysis of aerosols by rapid single-particle mass spectrometry,” J. Aerosol Sci. 26(4), 535–545 (1995).
[Crossref]

J. Loschmidt, “On the size of the air molecules,” J. Chem. Educ. 72(10), 870 (1995).
[Crossref]

1994 (1)

K. A. Prather, T. Nordmeyer, and K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66(9), 1403–1407 (1994).
[Crossref]

1993 (1)

W. Zapka, W. Ziemlich, W. P. Leung, and A. C. Tam, “Laser cleaning removes particles from surfaces,” Microelectron. Eng. 20(1–2), 171–183 (1993).
[Crossref]

1988 (1)

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

1986 (2)

1982 (1)

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

1980 (1)

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

1979 (2)

V. I. Bukatyi, A. M. Sagalakov, A. A. Tel’nikhin, and A. M. Shaiduk, “Combustion of carbon particles in a powerful optical field,” Combust. Explos. Shock Waves 15(6), 727–731 (1979).
[Crossref]

V. I. Bukatyi, V. A. Podogaev, and D. P. Chaporov, “Dynamics of a solid microparticle in a pulsed laser radiation field,” J. Appl. Mech. Tech. Phys. 20(1), 22–25 (1979).
[Crossref]

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1968 (1)

R. W. Waniek and P. J. Jarmuz, “Acceleration of microparticles by laser-induced vapor emission,” Appl. Phys. Lett. 12(2), 52–54 (1968).
[Crossref]

1967 (1)

G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).

1962 (1)

G. A. Askar’yan and E. M. Moroz, “Pressure on evaporation of matter in a radiation beam,” J. Exp. Theor. Phys. (USSR) 43(6), 2319–2320 (1962).

1956 (1)

C. A. Sleicher and S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48(10), 1819–1824 (1956).
[Crossref]

1927 (1)

H. A. Jones and G. M. Mackay, “The rates of evaporation and the vapor pressures of tungsten, molybdenum, platinum, nickel, iron, copper and silver,” Phys. Rev. 30(2), 201–214 (1927).
[Crossref]

Alexander, R. W.

Arnold, S.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Methods Cell Biol. 55, 1–27 (1998).
[PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Askar’yan, G. A.

G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).

G. A. Askar’yan and E. M. Moroz, “Pressure on evaporation of matter in a radiation beam,” J. Exp. Theor. Phys. (USSR) 43(6), 2319–2320 (1962).

Baer, T.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
[Crossref] [PubMed]

Bell, R. J.

Berglund, M.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Brand, W. A.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Brown, A.

Brown, A. K.

T. Mitra, A. K. Brown, and J. J. Talghader, “Micromachined drilling of dielectric substrates of varying badgap using laser accelerated particles,” in Proceedings of IEEE conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2017), pp. 1–2.

Bukatyi, V. I.

V. I. Bukatyi, A. M. Sagalakov, A. A. Tel’nikhin, and A. M. Shaiduk, “Combustion of carbon particles in a powerful optical field,” Combust. Explos. Shock Waves 15(6), 727–731 (1979).
[Crossref]

V. I. Bukatyi, V. A. Podogaev, and D. P. Chaporov, “Dynamics of a solid microparticle in a pulsed laser radiation field,” J. Appl. Mech. Tech. Phys. 20(1), 22–25 (1979).
[Crossref]

Carson, P. G.

P. G. Carson, K. R. Neubauer, M. V. Johnston, and A. S. Wexler, “On-line chemical analysis of aerosols by rapid single-particle mass spectrometry,” J. Aerosol Sci. 26(4), 535–545 (1995).
[Crossref]

Chaporov, D. P.

V. I. Bukatyi, V. A. Podogaev, and D. P. Chaporov, “Dynamics of a solid microparticle in a pulsed laser radiation field,” J. Appl. Mech. Tech. Phys. 20(1), 22–25 (1979).
[Crossref]

Chiu, D. T.

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

Chu, S.

Churchill, S. W.

C. A. Sleicher and S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48(10), 1819–1824 (1956).
[Crossref]

Coplen, T. B.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

De Bièvre, P.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Dessiaterik, Y.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
[Crossref] [PubMed]

Desyatnikov, A. S.

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[Crossref]

Edgar, J. S.

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

Fong, C.

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

Goela, J. S.

Green, B. D.

Grigoropoulos, C. P.

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 127, 721–725 (1998).
[Crossref]

Gröning, M.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Heyns, M. M.

G. Vereecke, E. Röhr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

Holden, N. E.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Hovis, F. E.

F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1995).
[Crossref]

Irrgeher, J.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Jarmuz, P. J.

R. W. Waniek and P. J. Jarmuz, “Acceleration of microparticles by laser-induced vapor emission,” Appl. Phys. Lett. 12(2), 52–54 (1968).
[Crossref]

Jeffries, G. D.

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

Johnston, M. V.

P. G. Carson, K. R. Neubauer, M. V. Johnston, and A. S. Wexler, “On-line chemical analysis of aerosols by rapid single-particle mass spectrometry,” J. Aerosol Sci. 26(4), 535–545 (1995).
[Crossref]

Jones, H. A.

H. A. Jones and G. M. Mackay, “The rates of evaporation and the vapor pressures of tungsten, molybdenum, platinum, nickel, iron, copper and silver,” Phys. Rev. 30(2), 201–214 (1927).
[Crossref]

Kivshar, Y. S.

Krolikowski, W.

Leung, W. P.

W. Zapka, W. Ziemlich, W. P. Leung, and A. C. Tam, “Laser cleaning removes particles from surfaces,” Microelectron. Eng. 20(1–2), 171–183 (1993).
[Crossref]

Lewittes, M.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

Loschmidt, J.

J. Loschmidt, “On the size of the air molecules,” J. Chem. Educ. 72(10), 870 (1995).
[Crossref]

Loss, R. D.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Mackay, G. M.

H. A. Jones and G. M. Mackay, “The rates of evaporation and the vapor pressures of tungsten, molybdenum, platinum, nickel, iron, copper and silver,” Phys. Rev. 30(2), 201–214 (1927).
[Crossref]

Maliborski, H.

F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1995).
[Crossref]

Meija, J.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Miller, R. E.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
[Crossref] [PubMed]

Mitra, T.

T. Mitra, A. K. Brown, and J. J. Talghader, “Micromachined drilling of dielectric substrates of varying badgap using laser accelerated particles,” in Proceedings of IEEE conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2017), pp. 1–2.

Moroz, E. M.

G. A. Askar’yan and E. M. Moroz, “Pressure on evaporation of matter in a radiation beam,” J. Exp. Theor. Phys. (USSR) 43(6), 2319–2320 (1962).

Neubauer, K. R.

P. G. Carson, K. R. Neubauer, M. V. Johnston, and A. S. Wexler, “On-line chemical analysis of aerosols by rapid single-particle mass spectrometry,” J. Aerosol Sci. 26(4), 535–545 (1995).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Newquist, L. A.

Nordmeyer, T.

K. A. Prather, T. Nordmeyer, and K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66(9), 1403–1407 (1994).
[Crossref]

Ogloza, A.

Ordal, M. A.

Oster, G.

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

Park, H. K.

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 127, 721–725 (1998).
[Crossref]

Podogaev, V. A.

V. I. Bukatyi, V. A. Podogaev, and D. P. Chaporov, “Dynamics of a solid microparticle in a pulsed laser radiation field,” J. Appl. Mech. Tech. Phys. 20(1), 22–25 (1979).
[Crossref]

Prather, K. A.

K. A. Prather, T. Nordmeyer, and K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66(9), 1403–1407 (1994).
[Crossref]

Prohaska, T.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Querry, M. R.

Rabinovich, M. S.

G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).

Radcliffe, C.

F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1995).
[Crossref]

Rey, J. J.

R. S. Shah, J. J. Rey, and A. F. Stewart, “Limits of performance: CW laser damage,” Proc. SPIE 6403, 640305 (2006).
[Crossref]

Rode, A. V.

Röhr, E.

G. Vereecke, E. Röhr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

Sagalakov, A. M.

V. I. Bukatyi, A. M. Sagalakov, A. A. Tel’nikhin, and A. M. Shaiduk, “Combustion of carbon particles in a powerful optical field,” Combust. Explos. Shock Waves 15(6), 727–731 (1979).
[Crossref]

Salt, K.

K. A. Prather, T. Nordmeyer, and K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66(9), 1403–1407 (1994).
[Crossref]

Sandberg, J.

Savchenko, M. M.

G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).

Shah, R. S.

R. S. Shah, J. J. Rey, and A. F. Stewart, “Limits of performance: CW laser damage,” Proc. SPIE 6403, 640305 (2006).
[Crossref]

Shaiduk, A. M.

V. I. Bukatyi, A. M. Sagalakov, A. A. Tel’nikhin, and A. M. Shaiduk, “Combustion of carbon particles in a powerful optical field,” Combust. Explos. Shock Waves 15(6), 727–731 (1979).
[Crossref]

Shelby, J. P.

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

Shepherd, B.

F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1995).
[Crossref]

Shvedov, V. G.

Sleicher, C. A.

C. A. Sleicher and S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48(10), 1819–1824 (1956).
[Crossref]

Smith, G. D.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
[Crossref] [PubMed]

Stephens, M.

Stewart, A. F.

R. S. Shah, J. J. Rey, and A. F. Stewart, “Limits of performance: CW laser damage,” Proc. SPIE 6403, 640305 (2006).
[Crossref]

Studenov, V. B.

G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).

Stwpanov, V. K.

G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).

Talghader, J.

Talghader, J. J.

T. Mitra, A. K. Brown, and J. J. Talghader, “Micromachined drilling of dielectric substrates of varying badgap using laser accelerated particles,” in Proceedings of IEEE conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2017), pp. 1–2.

Tam, A. C.

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 127, 721–725 (1998).
[Crossref]

W. Zapka, W. Ziemlich, W. P. Leung, and A. C. Tam, “Laser cleaning removes particles from surfaces,” Microelectron. Eng. 20(1–2), 171–183 (1993).
[Crossref]

Taylor, L.

Tel’nikhin, A. A.

V. I. Bukatyi, A. M. Sagalakov, A. A. Tel’nikhin, and A. M. Shaiduk, “Combustion of carbon particles in a powerful optical field,” Combust. Explos. Shock Waves 15(6), 727–731 (1979).
[Crossref]

Thomas, J.

Turner, N.

Vereecke, G.

G. Vereecke, E. Röhr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

Walczyk, T.

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Waniek, R. W.

R. W. Waniek and P. J. Jarmuz, “Acceleration of microparticles by laser-induced vapor emission,” Appl. Phys. Lett. 12(2), 52–54 (1968).
[Crossref]

Wexler, A. S.

P. G. Carson, K. R. Neubauer, M. V. Johnston, and A. S. Wexler, “On-line chemical analysis of aerosols by rapid single-particle mass spectrometry,” J. Aerosol Sci. 26(4), 535–545 (1995).
[Crossref]

Woods, E.

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
[Crossref] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Zapka, W.

W. Zapka, W. Ziemlich, W. P. Leung, and A. C. Tam, “Laser cleaning removes particles from surfaces,” Microelectron. Eng. 20(1–2), 171–183 (1993).
[Crossref]

Zhao, Y.

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

Ziemlich, W.

W. Zapka, W. Ziemlich, W. P. Leung, and A. C. Tam, “Laser cleaning removes particles from surfaces,” Microelectron. Eng. 20(1–2), 171–183 (1993).
[Crossref]

Anal. Chem. (2)

K. A. Prather, T. Nordmeyer, and K. Salt, “Real-time characterization of individual aerosol particles using time-of-flight mass spectrometry,” Anal. Chem. 66(9), 1403–1407 (1994).
[Crossref]

E. Woods, G. D. Smith, Y. Dessiaterik, T. Baer, and R. E. Miller, “Quantitative detection of aromatic compounds in single aerosol particle mass spectrometry,” Anal. Chem. 73(10), 2317–2322 (2001).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

R. W. Waniek and P. J. Jarmuz, “Acceleration of microparticles by laser-induced vapor emission,” Appl. Phys. Lett. 12(2), 52–54 (1968).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971).
[Crossref]

M. Lewittes, S. Arnold, and G. Oster, “Radiometric levitation of micron sized spheres,” Appl. Phys. Lett. 40(6), 455–457 (1982).
[Crossref]

Appl. Surf. Sci. (1)

A. C. Tam, H. K. Park, and C. P. Grigoropoulos, “Laser cleaning of surface contaminants,” Appl. Surf. Sci. 127, 721–725 (1998).
[Crossref]

Combust. Explos. Shock Waves (1)

V. I. Bukatyi, A. M. Sagalakov, A. A. Tel’nikhin, and A. M. Shaiduk, “Combustion of carbon particles in a powerful optical field,” Combust. Explos. Shock Waves 15(6), 727–731 (1979).
[Crossref]

Ind. Eng. Chem. (1)

C. A. Sleicher and S. W. Churchill, “Radiant heating of dispersed particles,” Ind. Eng. Chem. 48(10), 1819–1824 (1956).
[Crossref]

J. Aerosol Sci. (1)

P. G. Carson, K. R. Neubauer, M. V. Johnston, and A. S. Wexler, “On-line chemical analysis of aerosols by rapid single-particle mass spectrometry,” J. Aerosol Sci. 26(4), 535–545 (1995).
[Crossref]

J. Appl. Mech. Tech. Phys. (1)

V. I. Bukatyi, V. A. Podogaev, and D. P. Chaporov, “Dynamics of a solid microparticle in a pulsed laser radiation field,” J. Appl. Mech. Tech. Phys. 20(1), 22–25 (1979).
[Crossref]

J. Appl. Phys. (1)

G. Vereecke, E. Röhr, and M. M. Heyns, “Laser-assisted removal of particles on silicon wafers,” J. Appl. Phys. 85(7), 3837–3843 (1999).
[Crossref]

J. Chem. Educ. (1)

J. Loschmidt, “On the size of the air molecules,” J. Chem. Educ. 72(10), 870 (1995).
[Crossref]

J. Exp. Theor. Phys. (USSR) (1)

G. A. Askar’yan and E. M. Moroz, “Pressure on evaporation of matter in a radiation beam,” J. Exp. Theor. Phys. (USSR) 43(6), 2319–2320 (1962).

J. Exp. Theor. Phys. Lett. (USSR) (1)

G. A. Askar’yan, M. S. Rabinovich, M. M. Savchenko, V. K. Stwpanov, and V. B. Studenov, “Light-reaction acceleration of macroparticles of matter,” J. Exp. Theor. Phys. Lett. (USSR) 5(8), 258–260 (1967).

J. Opt. Soc. Am. B (1)

Methods Cell Biol. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Methods Cell Biol. 55, 1–27 (1998).
[PubMed]

Microelectron. Eng. (1)

W. Zapka, W. Ziemlich, W. P. Leung, and A. C. Tam, “Laser cleaning removes particles from surfaces,” Microelectron. Eng. 20(1–2), 171–183 (1993).
[Crossref]

Nano Lett. (1)

G. D. Jeffries, J. S. Edgar, Y. Zhao, J. P. Shelby, C. Fong, and D. T. Chiu, “Using polarization-shaped optical vortex traps for single-cell nanosurgery,” Nano Lett. 7(2), 415–420 (2007).
[Crossref] [PubMed]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

H. A. Jones and G. M. Mackay, “The rates of evaporation and the vapor pressures of tungsten, molybdenum, platinum, nickel, iron, copper and silver,” Phys. Rev. 30(2), 201–214 (1927).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Proc. SPIE (2)

R. S. Shah, J. J. Rey, and A. F. Stewart, “Limits of performance: CW laser damage,” Proc. SPIE 6403, 640305 (2006).
[Crossref]

F. E. Hovis, B. Shepherd, C. Radcliffe, and H. Maliborski, “Mechanisms of contamination induced optical damage in lasers,” Proc. SPIE 2428, 72–83 (1995).
[Crossref]

Pure Appl. Chem. (1)

J. Meija, T. B. Coplen, M. Berglund, W. A. Brand, P. De Bièvre, M. Gröning, N. E. Holden, J. Irrgeher, R. D. Loss, T. Walczyk, and T. Prohaska, “Atomic weights of the elements 2013 (IUPAC Technical Report),” Pure Appl. Chem. 88(3), 265–291 (2016).

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Science (1)

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

Other (7)

T. Mitra, A. K. Brown, and J. J. Talghader, “Micromachined drilling of dielectric substrates of varying badgap using laser accelerated particles,” in Proceedings of IEEE conference on Optical MEMS and Nanophotonics (OMN) (IEEE, 2017), pp. 1–2.

C. J. Durrant, The Atmosphere of the Sun (Hilger, 1988).

S. J. Blundell and K. M. Blundell, Concepts in Thermal Physics (OUP Oxford, 2009).

H. Schlichting, K. Gersten, E. Krause, and H. Oertel, Boundary-layer Theory (McGraw-hill, 1955).

W. M. Haynes, CRC handbook of Chemistry and Physics (CRC press, 2014).

E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer Science & Business Media, 2012).

T. L. Bergman and F. P. Incropera, Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup. The laser is collimated using (a) a focusing lens. The collimated light goes through (b) a cuvette and gets dumped in a beam dump. The laser propagates along the x direction. The cuvette back wall is cut away to enable reflection-free propagation of laser light and free propagation of illuminated particles. A hole is drilled in the cuvette bottom (shown in red circle) for particle insertion. A compressed air-solenoid system propels the particles inside the cuvette kept on top a (c) funnel. The particles enter the cuvette along the z direction. Particle acceleration and evaporation are imaged using an (d) imaging lens onto a high-speed camera. The high-speed camera is placed perpendicular to the cuvette along the y direction.
Fig. 2
Fig. 2 (a) A conceptual representation of particles in front of an etched “ruler” as they enter and are accelerated by a laser beam. The red circles represent the stainless steel particles entering the cuvette through the drilled hole underneath. The red arrow indicates the direction of acceleration of the particles once they interact with the beam. The laser propagates from left to right. The blue vertical lines represent the laser etched lines used for calibration. The distance between two lines is 0.5 mm. (b) A high speed camera image shows a few stainless steel particles (in white) entering the beam and diffracting light. The distance between the vertical lines is 0.5 mm. The laser propagates from left to right and the particles enter the cuvette through the hole drilled in the bottom of the cuvette. Note the three particles in the lower left have not fully entered the laser beam, but the two bright ones in the center are evaporating and accelerating.
Fig. 3
Fig. 3 (a) Conceptual representation of the motion of a single particle (red circle) in the laser beam in the first frame of two time-sequential high speed camera frames. Red arrow indicates the direction of particle acceleration. (b) A stainless steel particle in the first frame of two time-sequential high speed camera frames. The particle is moving from left to right along the direction of laser propagation. Once a number of particles enter the cuvette and starts diffracting light, they occlude the laser etched calibration lines. The entire image becomes white due to camera saturation and, in contrast, the particles become black. (c) Conceptual representation of the particle (red circle) motion in the second of the camera frames. (d) The second frame of two time-sequential high speed camera frames shows the same stainless steel particle shown in (b) moving 5.27 mm. Individual particles are tracked using ImageJ software to determine the distance traveled. The frame rate in this specific case is 8450 frames per second. The frame rate gives us the amount of time between (b) and (d). Figures 3(a) and 3(c) are sketched for conceptual reasons only - the distance traveled between these two conceptual figures does not actually represent the distance traveled in real time.
Fig. 4
Fig. 4 Traveled distance of 35-41 μm stainless steel particles under 1 MW/cm2 and 2 MW/cm2 laser intensities. The average, minimum and maximum values from approximately 20-25 particle trajectories per data point are shown here.
Fig. 5
Fig. 5 Comparison between the (a) theoretical prediction of particle acceleration due to radiation pressure and photophoretic forces, and (b) experimentally observed data. The simulation assumed 40 μm stainless steel particles illuminated with an intensity of 2 MW/cm2. Experimental data show the average, minimum and maximum values from approximately 20-25 particle trajectories per data point.
Fig. 6
Fig. 6 Evaporative propulsion force causing the particle to accelerate.
Fig. 7
Fig. 7 (a) Temperature profile and (b) radius of the particle for intensity 1 MW/cm2 and 2 MW/cm2. A 40 μm particle is considered for the simulation. Initial temperature of the particle is considered to be 300K. Equations (6, 7 and 8) are solved as discussed in theoretical development section to solve for the temperature and radius of the particle.
Fig. 8
Fig. 8 Comparison between the theoretical model and experimental data for (a) 1 MW/cm2 and (b) 2 MW/cm2 laser intensity. Simulation was for 40 μm stainless steel particle size, but the drag was calculated using the visual diameter of the particle including the evaporating plume, which was ~300 μm. As described in Table 2, only one unknown, and therefore empirically adjusted parameter, kabs, the absorption of the glow plume, was used in the analysis.
Fig. 9
Fig. 9 Theoretical model and experimental data for a time shift of 0.04 ms representing the probable situation where particles may enter the beam in between camera frames rather than exactly at the first visible image. Data is shown for (left) 1 MW/cm2 and (right) 2 MW/cm2.

Tables (2)

Tables Icon

Table 1 Initial conditions used to solve the system of equations

Tables Icon

Table 2 Parameters used to solve the system of equations

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

F radiationpressure = π r 2 I c
F photophoretic = J 1 9π μ 2 r R s P T
T= I 2( k s + k f )
m d 2 x d t 2 = π r 2 I c 6πμr dx dt
m d 2 x d t 2 = J 1 9π μ 2 r R s P T6πμr dx dt
dM dt = 4πa P p D W v 10 6 RT ln ( 1 P p P atm P p + P atm ) 1 where, D=2 ( 10 6 2kT N A π W v ) 1 2 kT 10 6 ( π d air 2 P air ) 1 and, P p = P * exp[ H v (T T b ) RT T b ]
π a 2 I H v W v dM dt σ4π a 2 ( T 4 T o 4 )= 4 3 π a 3 ρ s C s dT dt
da dt = dM dt 1 4π ρ s a 2
I= I o exp( k abs dM dt )
F R = K R dT dr = 16σ T 3 3κ dT da
σ T hot 4 σ T cold 4 16σ T hot 4 3κ T hot T cold 2a =0
F propulsionhot = 3R T hot W v 10 3 dM dt
F propulsioncold = 3R T cold W v 10 3 dM dt
F drag =3πμ( D glow ) dx dt when, Re( = v( D glow ) ρ f μ ) is small (0.01)
F drag =( 24 Re + 4 Re )( 1 2 ) ρ f v 2 [ 1 4 π ( D glow ) 2 ]
μ= μ o T hot T o
m p d 2 x d t 2 = F propulsionhot F propulsioncold F drag
dx dt =v

Metrics