Abstract

Over the years, free-space optical (FSO) communication has attracted considerable research interest owing to its high transmission rates via the unbounded and unlicensed bandwidths. Nevertheless, various weather conditions lead to significant deterioration of the FSO link capabilities. In this context, we report on the modelling of the channel attenuation coefficient (β) for a coastal environment and related ambient, considering the effect of coastal air temperature (T), relative humidity (RH) and dew point (TD) by employing a mobile FSO communication system capable of achieving a transmission rate of 1 Gbps at an outdoor distance of 70 m for optical beam wavelengths of 1310 nm and 1550 nm. For further validation of the proposed models, an indoor measurement over a 1.5 m distance utilizing 1310 nm, 1550 nm, and 1064 nm lasers was also performed. The first model provides a general link between T and β, while the second model provides a relation between β, RH as well as TD. By validating our attenuation coefficient model with actual outdoor and indoor experiments, we obtained a scaling parameter x and decaying parameter c values of 19.94, 40.02, 45.82 and 0.03015, 0.04096, 0.0428 for wavelengths of 1550, 1310, 1064 nm, respectively. The proposed models are well validated over the large variation of temperature and humidity over the FSO link in a coastal region and emulated indoor environment.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Studies on characterizing the transmission of RF signals over a turbulent FSO link

Pham Tien Dat, Abdemoula Bekkali, Kamugisha Kazaura, Kazuhiko Wakamori, Toshiji Suzuki, Mitsuji Matsumoto, Takeshi Higashino, Katsutoshi Tsukamoto, and Shozo Komaki
Opt. Express 17(10) 7731-7743 (2009)

Combined effect of turbulence and aerosol on free-space optical links

Jiri Libich, Joaquin Perez, Stanislav Zvanovec, Zabih Ghassemlooy, Roberto Nebuloni, and Carlo Capsoni
Appl. Opt. 56(2) 336-341 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
    [Crossref]
  2. M. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys and Tutorials 16(4), 2231–2258 (2014).
    [Crossref]
  3. H. Hogan, “Data demands drive free-space optics,” Photonics Spectra 2, 38–42 (2013).
  4. L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Academic, 2001).
    [Crossref]
  5. S. Al-Gailani, A. Mohammad, and R. Shaddad, “Enhancement of free space optical link in heavy rain attenuation using multiple beam concept,” Optik-International Journal for Light and Electron Optics 124(21), 4798–4801 (2013).
    [Crossref]
  6. C. C. Davis, I. I. Smolyaninov, and S. D. Milner, “Flexible optical wireless links and networks,” IEEE Commun. Mag. 41(3), 51–57 (2003).
    [Crossref]
  7. H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radio Eng. Mag. 19(2), 203–212 (2010).
  8. M. Esmail, H. Fathallah, and M.-S. Alouini, “Outdoor FSO communications under fog: attenuation modeling and performance evaluation,” IEEE Photon. J. 8(4), 2894–2903 (2016).
    [Crossref]
  9. M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).
  10. M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
    [Crossref]
  11. A. Mostafa and S. Hranilovic, “Channel measurement and Markov modeling of an urban free-space optical link,” IEEE/OSA J. of Optical Commun. Net. 4(10), 836–846 (2012).
    [Crossref]
  12. A. El-Wakeel, N. Mohammed, and M. Aly, “Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550nm operation,” Appl. Opt. 55(26), 7276–7286 (2016).
    [Crossref] [PubMed]
  13. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
    [Crossref]
  14. M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Tech. 32(3), 513–520 (2014).
    [Crossref]
  15. M. A. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 42, 319–329 (2004).
    [Crossref]
  16. M. Grabner and V. Kvicera, “Multiple Scattering in Rain and Fog on Free-Space Optical Links,” J. Lightwave Techn. 32(3), 513–520 (2014).
    [Crossref]
  17. L. Mustafa, E. Cerncic, and B. Thomsen, “FSO artificial low-cost fog attenuation experiment design,” in Proc. Int. Symp. Commun. Systems, Netw. and Digital Sig. Process. (CSNDSP) (Prague, 2016), pp. 978–983.
  18. J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
    [Crossref]
  19. J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).
  20. N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
    [Crossref]
  21. B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “”A custom-design atmospheric channel emulator for the performance evaluation of free space optical communication systems, ”International Conference on Transparent Optical Networks (ICTON)(Girona, 2017), pp. 1–5.
  22. M. Esmail, H. Fathallah, and M.-S. Alouini, “An experimental study of FSO link performance in desert environment,” IEEE Commun. Lett. 20(9), 1888–1891 (2016).
    [Crossref]
  23. J. Libich, J. Perez, S. Zvanovec, Z. Ghassemlooy, R. Nebuloni, and C. Capsoni, “Combined effect of turbulence and aerosol on free-space optical links,” Appl. Opt. 56(2), 336–341 (2017).
    [Crossref] [PubMed]
  24. A. Prokes, “Atmospheric effects on availability of free space optics systems,” Opt. Eng. 48(6), 066001 (2009).
    [Crossref]
  25. M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
    [Crossref]
  26. M. S. Sheikh, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
    [Crossref]
  27. E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
    [Crossref]
  28. M. G. Lawrence, “The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications,” American Metrological Sociaty 86(2), 225–233 (2005).
    [Crossref]
  29. O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” Appl. Meteor. 35601–609 (1996).
    [Crossref]
  30. S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
    [Crossref]
  31. L. Mustafa, “Light speed networking,” http://www.koruza.net/ .
  32. W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.
  33. W. G. Alheadary, K.-H. Park, B. S. Ooi, and M.-S. Alouini, “Free-space optical channel characterization in a coastal environment,” Journal of Communications and Information Networks 2(4), 100–106 (2017).
    [Crossref]
  34. A. G. Alkholidi and K. S. Altowij, “Climate effects on performance of free space optical communication systems in Yemen,” Front. Optoelectron. 7(1), 91–101 (2014).
    [Crossref]

2017 (3)

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

J. Libich, J. Perez, S. Zvanovec, Z. Ghassemlooy, R. Nebuloni, and C. Capsoni, “Combined effect of turbulence and aerosol on free-space optical links,” Appl. Opt. 56(2), 336–341 (2017).
[Crossref] [PubMed]

W. G. Alheadary, K.-H. Park, B. S. Ooi, and M.-S. Alouini, “Free-space optical channel characterization in a coastal environment,” Journal of Communications and Information Networks 2(4), 100–106 (2017).
[Crossref]

2016 (5)

S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
[Crossref]

M. Esmail, H. Fathallah, and M.-S. Alouini, “An experimental study of FSO link performance in desert environment,” IEEE Commun. Lett. 20(9), 1888–1891 (2016).
[Crossref]

A. El-Wakeel, N. Mohammed, and M. Aly, “Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550nm operation,” Appl. Opt. 55(26), 7276–7286 (2016).
[Crossref] [PubMed]

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

M. Esmail, H. Fathallah, and M.-S. Alouini, “Outdoor FSO communications under fog: attenuation modeling and performance evaluation,” IEEE Photon. J. 8(4), 2894–2903 (2016).
[Crossref]

2015 (1)

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

2014 (4)

A. G. Alkholidi and K. S. Altowij, “Climate effects on performance of free space optical communication systems in Yemen,” Front. Optoelectron. 7(1), 91–101 (2014).
[Crossref]

M. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys and Tutorials 16(4), 2231–2258 (2014).
[Crossref]

M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Tech. 32(3), 513–520 (2014).
[Crossref]

M. Grabner and V. Kvicera, “Multiple Scattering in Rain and Fog on Free-Space Optical Links,” J. Lightwave Techn. 32(3), 513–520 (2014).
[Crossref]

2013 (2)

H. Hogan, “Data demands drive free-space optics,” Photonics Spectra 2, 38–42 (2013).

S. Al-Gailani, A. Mohammad, and R. Shaddad, “Enhancement of free space optical link in heavy rain attenuation using multiple beam concept,” Optik-International Journal for Light and Electron Optics 124(21), 4798–4801 (2013).
[Crossref]

2012 (4)

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

A. Mostafa and S. Hranilovic, “Channel measurement and Markov modeling of an urban free-space optical link,” IEEE/OSA J. of Optical Commun. Net. 4(10), 836–846 (2012).
[Crossref]

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[Crossref]

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

2010 (1)

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radio Eng. Mag. 19(2), 203–212 (2010).

2009 (1)

A. Prokes, “Atmospheric effects on availability of free space optics systems,” Opt. Eng. 48(6), 066001 (2009).
[Crossref]

2008 (1)

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

2007 (1)

M. S. Sheikh, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
[Crossref]

2005 (1)

M. G. Lawrence, “The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications,” American Metrological Sociaty 86(2), 225–233 (2005).
[Crossref]

2004 (2)

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

M. A. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 42, 319–329 (2004).
[Crossref]

2003 (1)

C. C. Davis, I. I. Smolyaninov, and S. D. Milner, “Flexible optical wireless links and networks,” IEEE Commun. Mag. 41(3), 51–57 (2003).
[Crossref]

2001 (1)

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

1996 (1)

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” Appl. Meteor. 35601–609 (1996).
[Crossref]

Al Naboulsi, M.

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

Alduchov, O. A.

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” Appl. Meteor. 35601–609 (1996).
[Crossref]

Al-Gailani, S.

S. Al-Gailani, A. Mohammad, and R. Shaddad, “Enhancement of free space optical link in heavy rain attenuation using multiple beam concept,” Optik-International Journal for Light and Electron Optics 124(21), 4798–4801 (2013).
[Crossref]

Al-Gailani, S. A.

S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
[Crossref]

Alheadary, W. G.

W. G. Alheadary, K.-H. Park, B. S. Ooi, and M.-S. Alouini, “Free-space optical channel characterization in a coastal environment,” Journal of Communications and Information Networks 2(4), 100–106 (2017).
[Crossref]

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Alkholidi, A. G.

A. G. Alkholidi and K. S. Altowij, “Climate effects on performance of free space optical communication systems in Yemen,” Front. Optoelectron. 7(1), 91–101 (2014).
[Crossref]

Alouini, M.-S.

W. G. Alheadary, K.-H. Park, B. S. Ooi, and M.-S. Alouini, “Free-space optical channel characterization in a coastal environment,” Journal of Communications and Information Networks 2(4), 100–106 (2017).
[Crossref]

M. Esmail, H. Fathallah, and M.-S. Alouini, “An experimental study of FSO link performance in desert environment,” IEEE Commun. Lett. 20(9), 1888–1891 (2016).
[Crossref]

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

M. Esmail, H. Fathallah, and M.-S. Alouini, “Outdoor FSO communications under fog: attenuation modeling and performance evaluation,” IEEE Photon. J. 8(4), 2894–2903 (2016).
[Crossref]

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Altowij, K. S.

A. G. Alkholidi and K. S. Altowij, “Climate effects on performance of free space optical communication systems in Yemen,” Front. Optoelectron. 7(1), 91–101 (2014).
[Crossref]

Aly, M.

Andrews, L.

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Academic, 2001).
[Crossref]

Awan, M. S.

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

Bhatnagar, M.

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

Birnbacher, U.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Bohata, J.

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

Capsoni, C.

Cerncic, E.

L. Mustafa, E. Cerncic, and B. Thomsen, “FSO artificial low-cost fog attenuation experiment design,” in Proc. Int. Symp. Commun. Systems, Netw. and Digital Sig. Process. (CSNDSP) (Prague, 2016), pp. 978–983.

Chlestil, C.

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

Davis, C. C.

C. C. Davis, I. I. Smolyaninov, and S. D. Milner, “Flexible optical wireless links and networks,” IEEE Commun. Mag. 41(3), 51–57 (2003).
[Crossref]

de Fornel, F.

M. A. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 42, 319–329 (2004).
[Crossref]

De-Fornel, F.

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

El-Wakeel, A.

Eskridge, R. E.

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” Appl. Meteor. 35601–609 (1996).
[Crossref]

Esmail, M.

M. Esmail, H. Fathallah, and M.-S. Alouini, “An experimental study of FSO link performance in desert environment,” IEEE Commun. Lett. 20(9), 1888–1891 (2016).
[Crossref]

M. Esmail, H. Fathallah, and M.-S. Alouini, “Outdoor FSO communications under fog: attenuation modeling and performance evaluation,” IEEE Photon. J. 8(4), 2894–2903 (2016).
[Crossref]

Fathallah, H.

M. Esmail, H. Fathallah, and M.-S. Alouini, “Outdoor FSO communications under fog: attenuation modeling and performance evaluation,” IEEE Photon. J. 8(4), 2894–2903 (2016).
[Crossref]

M. Esmail, H. Fathallah, and M.-S. Alouini, “An experimental study of FSO link performance in desert environment,” IEEE Commun. Lett. 20(9), 1888–1891 (2016).
[Crossref]

Flecker, B.

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

M. S. Sheikh, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
[Crossref]

Gebhart, M.

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

M. S. Sheikh, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
[Crossref]

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Ghassemlooy, Z.

J. Libich, J. Perez, S. Zvanovec, Z. Ghassemlooy, R. Nebuloni, and C. Capsoni, “Combined effect of turbulence and aerosol on free-space optical links,” Appl. Opt. 56(2), 336–341 (2017).
[Crossref] [PubMed]

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[Crossref]

Grabner, M.

M. Grabner and V. Kvicera, “Multiple Scattering in Rain and Fog on Free-Space Optical Links,” J. Lightwave Techn. 32(3), 513–520 (2014).
[Crossref]

M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Tech. 32(3), 513–520 (2014).
[Crossref]

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

Guo, Y.

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Henniger, H.

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radio Eng. Mag. 19(2), 203–212 (2010).

Ho, K.-T.

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

Hogan, H.

H. Hogan, “Data demands drive free-space optics,” Photonics Spectra 2, 38–42 (2013).

Hopen, C.

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Academic, 2001).
[Crossref]

Hranilovic, S.

A. Mostafa and S. Hranilovic, “Channel measurement and Markov modeling of an urban free-space optical link,” IEEE/OSA J. of Optical Commun. Net. 4(10), 836–846 (2012).
[Crossref]

Ijaz, M.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[Crossref]

Islam, M. S.

S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
[Crossref]

Kebapci, B.

B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “”A custom-design atmospheric channel emulator for the performance evaluation of free space optical communication systems, ”International Conference on Transparent Optical Networks (ICTON)(Girona, 2017), pp. 1–5.

Khalighi, M.

M. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys and Tutorials 16(4), 2231–2258 (2014).
[Crossref]

Khalighi, M.-A.

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

Khan, M. S.

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

Kim, I. I.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

Kogler, W.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Komanec, M.

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

Korevaar, E. J.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

Kvicera, V.

M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Tech. 32(3), 513–520 (2014).
[Crossref]

M. Grabner and V. Kvicera, “Multiple Scattering in Rain and Fog on Free-Space Optical Links,” J. Lightwave Techn. 32(3), 513–520 (2014).
[Crossref]

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

Lawrence, M. G.

M. G. Lawrence, “The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications,” American Metrological Sociaty 86(2), 225–233 (2005).
[Crossref]

Le Minh, H.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[Crossref]

Leitgeb, E.

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

M. S. Sheikh, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
[Crossref]

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Libich, J.

J. Libich, J. Perez, S. Zvanovec, Z. Ghassemlooy, R. Nebuloni, and C. Capsoni, “Combined effect of turbulence and aerosol on free-space optical links,” Appl. Opt. 56(2), 336–341 (2017).
[Crossref] [PubMed]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

Liu, G.

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

McArthur, B.

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

Milner, S. D.

C. C. Davis, I. I. Smolyaninov, and S. D. Milner, “Flexible optical wireless links and networks,” IEEE Commun. Mag. 41(3), 51–57 (2003).
[Crossref]

Miramirkhani, F.

B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “”A custom-design atmospheric channel emulator for the performance evaluation of free space optical communication systems, ”International Conference on Transparent Optical Networks (ICTON)(Girona, 2017), pp. 1–5.

Mohammad, A.

S. Al-Gailani, A. Mohammad, and R. Shaddad, “Enhancement of free space optical link in heavy rain attenuation using multiple beam concept,” Optik-International Journal for Light and Electron Optics 124(21), 4798–4801 (2013).
[Crossref]

Mohammad, A. B.

S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
[Crossref]

Mohammed, N.

Mostafa, A.

A. Mostafa and S. Hranilovic, “Channel measurement and Markov modeling of an urban free-space optical link,” IEEE/OSA J. of Optical Commun. Net. 4(10), 836–846 (2012).
[Crossref]

Muhammad, S. S.

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

Mustafa, L.

L. Mustafa, E. Cerncic, and B. Thomsen, “FSO artificial low-cost fog attenuation experiment design,” in Proc. Int. Symp. Commun. Systems, Netw. and Digital Sig. Process. (CSNDSP) (Prague, 2016), pp. 978–983.

Naboulsi, M. A.

M. A. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 42, 319–329 (2004).
[Crossref]

Nebuloni, R.

J. Libich, J. Perez, S. Zvanovec, Z. Ghassemlooy, R. Nebuloni, and C. Capsoni, “Combined effect of turbulence and aerosol on free-space optical links,” Appl. Opt. 56(2), 336–341 (2017).
[Crossref] [PubMed]

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

Ng, T. K.

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Ng, T.-K.

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

Nor, N.

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

Nouri, H.

B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “”A custom-design atmospheric channel emulator for the performance evaluation of free space optical communication systems, ”International Conference on Transparent Optical Networks (ICTON)(Girona, 2017), pp. 1–5.

Ooi, B. S.

W. G. Alheadary, K.-H. Park, B. S. Ooi, and M.-S. Alouini, “Free-space optical channel characterization in a coastal environment,” Journal of Communications and Information Networks 2(4), 100–106 (2017).
[Crossref]

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Oubei, H.

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

Park, K.-H.

W. G. Alheadary, K.-H. Park, B. S. Ooi, and M.-S. Alouini, “Free-space optical channel characterization in a coastal environment,” Journal of Communications and Information Networks 2(4), 100–106 (2017).
[Crossref]

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Perez, J.

J. Libich, J. Perez, S. Zvanovec, Z. Ghassemlooy, R. Nebuloni, and C. Capsoni, “Combined effect of turbulence and aerosol on free-space optical links,” Appl. Opt. 56(2), 336–341 (2017).
[Crossref] [PubMed]

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[Crossref]

Pesek, P.

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

Phillips, R.

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Academic, 2001).
[Crossref]

Popoola, W.

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

Prokes, A.

A. Prokes, “Atmospheric effects on availability of free space optics systems,” Opt. Eng. 48(6), 066001 (2009).
[Crossref]

Rajbhandari, S.

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[Crossref]

Saxena, P.

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

Schrotter, P.

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Shaddad, R.

S. Al-Gailani, A. Mohammad, and R. Shaddad, “Enhancement of free space optical link in heavy rain attenuation using multiple beam concept,” Optik-International Journal for Light and Electron Optics 124(21), 4798–4801 (2013).
[Crossref]

Shaddad, R. Q.

S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
[Crossref]

Sheikh, M. S.

M. S. Sheikh, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
[Crossref]

Sheikh, U. U.

S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
[Crossref]

Sheikh Muhammad, S.

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

Shen, C.

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

Sizun, H.

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

M. A. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 42, 319–329 (2004).
[Crossref]

Smolyaninov, I. I.

C. C. Davis, I. I. Smolyaninov, and S. D. Milner, “Flexible optical wireless links and networks,” IEEE Commun. Mag. 41(3), 51–57 (2003).
[Crossref]

Stegenburgs, E.

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Thomsen, B.

L. Mustafa, E. Cerncic, and B. Thomsen, “FSO artificial low-cost fog attenuation experiment design,” in Proc. Int. Symp. Commun. Systems, Netw. and Digital Sig. Process. (CSNDSP) (Prague, 2016), pp. 978–983.

Uysal, M.

M. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys and Tutorials 16(4), 2231–2258 (2014).
[Crossref]

B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “”A custom-design atmospheric channel emulator for the performance evaluation of free space optical communication systems, ”International Conference on Transparent Optical Networks (ICTON)(Girona, 2017), pp. 1–5.

Wilfert, O.

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radio Eng. Mag. 19(2), 203–212 (2010).

Zvanovec, S.

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

J. Libich, J. Perez, S. Zvanovec, Z. Ghassemlooy, R. Nebuloni, and C. Capsoni, “Combined effect of turbulence and aerosol on free-space optical links,” Appl. Opt. 56(2), 336–341 (2017).
[Crossref] [PubMed]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

American Metrological Sociaty (1)

M. G. Lawrence, “The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications,” American Metrological Sociaty 86(2), 225–233 (2005).
[Crossref]

Appl. Meteor. (1)

O. A. Alduchov and R. E. Eskridge, “Improved Magnus form approximation of saturation vapor pressure,” Appl. Meteor. 35601–609 (1996).
[Crossref]

Appl. Opt. (2)

Front. Optoelectron. (1)

A. G. Alkholidi and K. S. Altowij, “Climate effects on performance of free space optical communication systems in Yemen,” Front. Optoelectron. 7(1), 91–101 (2014).
[Crossref]

IEEE Commun. Lett. (2)

M. Esmail, H. Fathallah, and M.-S. Alouini, “An experimental study of FSO link performance in desert environment,” IEEE Commun. Lett. 20(9), 1888–1891 (2016).
[Crossref]

J. Perez, Z. Ghassemlooy, S. Rajbhandari, M. Ijaz, and H. Le Minh, “Ethernet FSO communications link performance study under a controlled fog environment,” IEEE Commun. Lett. 16(3), 408–410 (2012).
[Crossref]

IEEE Commun. Mag. (1)

C. C. Davis, I. I. Smolyaninov, and S. D. Milner, “Flexible optical wireless links and networks,” IEEE Commun. Mag. 41(3), 51–57 (2003).
[Crossref]

IEEE Commun. Surveys and Tutorials (1)

M. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys and Tutorials 16(4), 2231–2258 (2014).
[Crossref]

IEEE Photon. J. (1)

M. Esmail, H. Fathallah, and M.-S. Alouini, “Outdoor FSO communications under fog: attenuation modeling and performance evaluation,” IEEE Photon. J. 8(4), 2894–2903 (2016).
[Crossref]

IEEE/OSA J. of Optical Commun. Net. (1)

A. Mostafa and S. Hranilovic, “Channel measurement and Markov modeling of an urban free-space optical link,” IEEE/OSA J. of Optical Commun. Net. 4(10), 836–846 (2012).
[Crossref]

J. Lightwave Tech. (1)

M. Grabner and V. Kvicera, “Multiple scattering in rain and fog on free-space optical links,” J. Lightwave Tech. 32(3), 513–520 (2014).
[Crossref]

J. Lightwave Techn. (1)

M. Grabner and V. Kvicera, “Multiple Scattering in Rain and Fog on Free-Space Optical Links,” J. Lightwave Techn. 32(3), 513–520 (2014).
[Crossref]

J. Lightwave Thech. (1)

N. Nor, Z. Ghassemlooy, J. Bohata, P. Saxena, M. Komanec, S. Zvanovec, M. Bhatnagar, and M.-A. Khalighi, “Experimental investigation of all-optical relay-assisted 10 Gb/s FSO link over the atmospheric turbulence channel,” J. Lightwave Thech. 35(1), 45–53 (2017).
[Crossref]

J. Opt. (1)

S. A. Al-Gailani, A. B. Mohammad, M. S. Islam, U. U. Sheikh, and R. Q. Shaddad, “Tropical temperature and humidity modeling for free space optical link,” J. Opt. 45(1), 87–91 (2016).
[Crossref]

Journal of Communications and Information Networks (1)

W. G. Alheadary, K.-H. Park, B. S. Ooi, and M.-S. Alouini, “Free-space optical channel characterization in a coastal environment,” Journal of Communications and Information Networks 2(4), 100–106 (2017).
[Crossref]

Opt. Eng. (5)

A. Prokes, “Atmospheric effects on availability of free space optics systems,” Opt. Eng. 48(6), 066001 (2009).
[Crossref]

M. S. Khan, S. S. Muhammad, M. S. Awan, V. Kvicera, M. Grabner, and E. Leitgeb, “Further results on fog modeling for terrestrial free-space optical links,” Opt. Eng. 51(3), 1–9 (2012).
[Crossref]

M. S. Sheikh, B. Flecker, E. Leitgeb, and M. Gebhart, “Characterization of fog attenuation in terrestrial free space optical links,” Opt. Eng. 46(6), 066001 (2007).
[Crossref]

M. A. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Opt. Eng. 42, 319–329 (2004).
[Crossref]

M. Al Naboulsi, F. De-Fornel, H. Sizun, M. Gebhart, E. Leitgeb, S. Sheikh Muhammad, B. Flecker, and C. Chlestil, “Measured and predicted light attenuation in dense coastal upslope fog at 650, 850, and 950 nm for free-space optics applications,” Opt. Eng. 47(3), 1–14 (2008).
[Crossref]

Opt. Express (2)

C. Shen, Y. Guo, H. Oubei, T.-K. Ng, G. Liu, K.-H. Park, K.-T. Ho, M.-S. Alouini, and B. S. Ooi, “20-meter underwater wireless optical communication link with 1.5 Gbps data rate,” Opt. Express 22(24), 25502–25509 (2016).
[Crossref]

J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. Popoola, and Z. Ghassemlooy, “Experimental verification of an all-optical dual-hop 10 Gbit/s free-space optics link under turbulence regimes,” Opt. Express 40(3), 391–394 (2015).

Optik-International Journal for Light and Electron Optics (1)

S. Al-Gailani, A. Mohammad, and R. Shaddad, “Enhancement of free space optical link in heavy rain attenuation using multiple beam concept,” Optik-International Journal for Light and Electron Optics 124(21), 4798–4801 (2013).
[Crossref]

Photonics Spectra (1)

H. Hogan, “Data demands drive free-space optics,” Photonics Spectra 2, 38–42 (2013).

Proc. SPIE (2)

I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[Crossref]

E. Leitgeb, M. Gebhart, U. Birnbacher, W. Kogler, and P. Schrotter, “High availability of hybrid wireless networks,” Proc. SPIE 5465, 238–249 (2004).
[Crossref]

Radio Eng. Mag. (1)

H. Henniger and O. Wilfert, “An introduction to free-space optical communications,” Radio Eng. Mag. 19(2), 203–212 (2010).

Radio engineering (1)

M. S. Khan, M. Grabner, S. S. Muhammad, M. S. Awan, E. Leitgeb, V. Kvicera, and R. Nebuloni, “Empirical relations for optical attenuation prediction from liquid water content of fog,” Radio engineering 21, 911–916 (2012).

Other (5)

L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (Academic, 2001).
[Crossref]

L. Mustafa, E. Cerncic, and B. Thomsen, “FSO artificial low-cost fog attenuation experiment design,” in Proc. Int. Symp. Commun. Systems, Netw. and Digital Sig. Process. (CSNDSP) (Prague, 2016), pp. 978–983.

B. Kebapci, F. Miramirkhani, H. Nouri, and M. Uysal, “”A custom-design atmospheric channel emulator for the performance evaluation of free space optical communication systems, ”International Conference on Transparent Optical Networks (ICTON)(Girona, 2017), pp. 1–5.

L. Mustafa, “Light speed networking,” http://www.koruza.net/ .

W. G. Alheadary, Y. Guo, E. Stegenburgs, K.-H. Park, T. K. Ng, B. S. Ooi, and M.-S. Alouini, “Design and deployment of mobile FSO communication system,” in Proc. of “CLEO: 2017,” p. AW4B.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Condensed water at dew-point as TD approaches ambient temperature T.
Fig. 2
Fig. 2 System deployment of two mobile FSO systems for outdoor experiment.
Fig. 3
Fig. 3 System setup of a controllable climate chamber for indoor experiment.
Fig. 4
Fig. 4 Relation between temperature and relative humidity.
Fig. 5
Fig. 5 Relation between measured received power and temperature (at 70 m, IM/DD, OOK).
Fig. 6
Fig. 6 Relation between temperature and attenuation coefficient over time period.
Fig. 7
Fig. 7 Verification of outdoor attenuation model regarding temperature.
Fig. 8
Fig. 8 Relation between relative humidity and attenuation coefficient over time period.
Fig. 9
Fig. 9 Verification of outdoor attenuation coefficient models regarding relative humidity and temperature of dew-point.
Fig. 10
Fig. 10 Verification of the outdoor attenuation models with indoor measurements.
Fig. 11
Fig. 11 Verification of indoor attenuation coefficient models regarding the relative humidity and temperature of dew-point.

Tables (5)

Tables Icon

Table 1 FSO system parameters

Tables Icon

Table 2 Values of fitting parameters from outdoor measurements for attenuation coefficient model in (7)

Tables Icon

Table 3 Values of fitting accuracy for attenuation models from (8), (9), and (10)

Tables Icon

Table 4 Values of fitting parameters from indoor chamber measurements for the attenuation model in (7)

Tables Icon

Table 5 Values of fitting accuracy attenuation coefficient models from (8), (9), and (10)

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R H = instantaneous absolute humidity maximum absolute humidity × 100 .
R H = 100 5 ( T T D ) .
R H = K T D T × 100 ,
R H = exp ( 17.625 × T D 243.04 + T D ) exp ( 17.625 × T 243.04 + T ) × 100 .
d β d T ( β ) d β β = c d T ,
β 0 β d β β = 0 T c d T .
Model 1 : β = x e c T ,
Model 2 ( A ) : β = x e c ( T D + 100 R H 5 ) ,
Model 2 ( B ) : β = x e c K T D R H × 100 ,
Model 2 ( C ) : β = x e c 243.04 * 17.625 × T D 243.04 + T D log ( R H 100 ) 17.625 + log ( R H 100 ) 17.625 × T D 243.04 + T D .
P r = P t a 2 2 [ a 1 2 + θ L ] 2 e β L ,
τ = 4.3429 β ( dB / k m ) ,

Metrics