Abstract

Temperature rise during operation is a central concern of semiconductor lasers and especially difficult to measure during a pulsed operation. We present a technique for in situ time-resolved temperature measurement of quantum cascade lasers operating in a pulsed mode at ~9.25 μm emission wavelength. Using a step-scan approach with 5 ns resolution, we measure the temporal evolution of the spectral density, observing longitudinal Fabry-Perot modes that correspond to different transverse modes. Considering the multiple thin layers that make up the active layer and the associated Kapitza resistance, thermal properties of QCLs are significantly different than bulk-like laser diodes where this approach was successfully used. Compounded by the lattice expansion and refractive index changes due to time-dependent temperature rise, Fabry-Perot modes were observed and analyzed from the time-resolved emission spectra of quantum cascade lasers to deduce the cavity temperature. Temperature rise of a QCL in a pulsed mode operation between −160 °C to −80 °C was measured as a function of time. Using the temporal temperature variations, a thermal model was constructed that led to the extraction of cavity thermal conductivity in agreement with previous results. Critical in maximizing pulsed output power, the effect of the duty cycle on the evolution of laser heating was studied in situ, leading to a heat map to guide the operation of pulsed lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H2S in a CH4 matrix for process analytics

Harald Moser, Andreas Genner, Johannes Ofner, C. Schwarzer, Gottfried Strasser, and Bernhard Lendl
Opt. Express 24(6) 6572-6585 (2016)

Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy

Markus Brandstetter, Andreas Genner, Clemens Schwarzer, Elvis Mujagic, Gottfried Strasser, and Bernhard Lendl
Opt. Express 22(3) 2656-2664 (2014)

Proton and gamma irradiation of Fabry–Perot quantum cascade lasers for space qualification

Tanya L. Myers, Bret D. Cannon, Carolyn S. Brauer, Stewart M. Hansen, and Blake G. Crowther
Appl. Opt. 54(3) 527-534 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref] [PubMed]
  2. Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
    [Crossref]
  3. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  4. M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
    [Crossref]
  5. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. K. Patel, and N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
    [Crossref] [PubMed]
  6. M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
    [Crossref] [PubMed]
  7. M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
    [Crossref]
  8. V. Spagnolo, M. S. Vitiello, C. D. I. Franco, and G. Scamarcio, “Thermal Modelling of Quantum Cascade Lasers,” in Proceedings of the International School and Conference on Photonics, 116(4) (2009).
  9. M. S. Vitiello and G. Scamarcio, “Anisotropic heat propagation velocity in quantumcascade lasers,” Appl. Phys. Lett. 96(10), 101101 (2010).
    [Crossref]
  10. M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
    [Crossref]
  11. M. Razeghi, J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, J. E. David, J. Nguyen, B. Gokden, and S. Khosravani, “Quantum cascade laser progress and outlook,” in Optically Based Biological and Chemical Sensing for Defence, vol. 5617, (International Society for Optics and Photonics, 2004.),pp. 221–233.
  12. T. Alexei, R. Go, M. Pushkarsky, M. Razeghi, C. Kumar, and N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” in Proceedings of the 103, no. 13 (National Academy of Sciences of the United States of America, 2006),pp. 4831–4835.
  13. K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
    [Crossref]
  14. D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
    [Crossref]
  15. D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
    [Crossref]
  16. D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
    [Crossref]
  17. D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
    [Crossref]
  18. S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
    [Crossref]
  19. V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
    [Crossref]
  20. C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
    [Crossref]
  21. T. L. Paoli, “A New Technique for Measuring the Thermal Impedance of Junction Lasers,” IEEE J. Quantum Electron. 11(7), 498–503 (1975).
    [Crossref]
  22. J. S. Manning, “Thermal impedance of diode lasers: Comparison of experimental methods and a theoretical model,” J. Appl. Phys. 52(5), 3179–3184 (1981).
    [Crossref]
  23. B. S. Bhumbra, G. H. B. Thompson, and A. P. Wright, “Thermal impedance measurement of semiconductor lasers,” Electron. Lett. 30(10), 793–794 (1994).
    [Crossref]
  24. E. Duda, J. C. Carballes, and J. Apruzzese, “Thermal resistance and temperature distribution in double-heterostructure lasers: Calculations and experimental results,” IEEE J. Quantum Electron. 15(8), 812–817 (1979).
    [Crossref]
  25. M. Bertolotti, V. Bogdanov, A. Ferrari, A. Jascow, N. Nazorova, A. Pikhtin, and L. Schirone, “Temperature dependence of the refractive index in semiconductors,” J. Opt. Soc. Am. B 7(6), 918 (1990).
    [Crossref]
  26. M. Brandstetter, A. Genner, C. Schwarzer, E. Mujagic, G. Strasser, and B. Lendl, “Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy,” Opt. Express 22(3), 2656–2664 (2014).
    [Crossref] [PubMed]
  27. B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
    [Crossref]
  28. J. Melkonian, J. Petit, M. Raybaut, A. Godard, and M. Lefebvre, “Time-resolved spectral characterization of a pulsed external-cavity quantum cascade laser,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2K.4.
  29. N. N. Sirota, V. V. Novikov, and A. M. Antiukhov, Dokl. Akad. Nauk SSSR 263(1), 96–100 (1982)
  30. U. Z. Piesbergen, Naturforschung18a, 2 141–147 (1963).
  31. V. Palankovski, “Simulation of Heterojunction Bipolar Transistors,” Dissertation, TechnischeUniversität Wien, 2000. http://www.iue.tuwien.ac.at/phd/palankovski .
  32. A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
    [Crossref]

2017 (2)

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

2016 (2)

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

2015 (2)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
[Crossref] [PubMed]

2014 (1)

2012 (2)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. K. Patel, and N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

2011 (1)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

2010 (1)

M. S. Vitiello and G. Scamarcio, “Anisotropic heat propagation velocity in quantumcascade lasers,” Appl. Phys. Lett. 96(10), 101101 (2010).
[Crossref]

2009 (3)

M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

2008 (2)

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

2006 (1)

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[Crossref]

2003 (2)

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

1994 (2)

B. S. Bhumbra, G. H. B. Thompson, and A. P. Wright, “Thermal impedance measurement of semiconductor lasers,” Electron. Lett. 30(10), 793–794 (1994).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

1990 (1)

1981 (1)

J. S. Manning, “Thermal impedance of diode lasers: Comparison of experimental methods and a theoretical model,” J. Appl. Phys. 52(5), 3179–3184 (1981).
[Crossref]

1979 (1)

E. Duda, J. C. Carballes, and J. Apruzzese, “Thermal resistance and temperature distribution in double-heterostructure lasers: Calculations and experimental results,” IEEE J. Quantum Electron. 15(8), 812–817 (1979).
[Crossref]

1975 (1)

T. L. Paoli, “A New Technique for Measuring the Thermal Impedance of Junction Lasers,” IEEE J. Quantum Electron. 11(7), 498–503 (1975).
[Crossref]

Apruzzese, J.

E. Duda, J. C. Carballes, and J. Apruzzese, “Thermal resistance and temperature distribution in double-heterostructure lasers: Calculations and experimental results,” IEEE J. Quantum Electron. 15(8), 812–817 (1979).
[Crossref]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Ban, D.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Bandyopadhyay, N.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Becker, C.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

Belkin, M. A.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

Bertolotti, M.

Bhumbra, B. S.

B. S. Bhumbra, G. H. B. Thompson, and A. P. Wright, “Thermal impedance measurement of semiconductor lasers,” Electron. Lett. 30(10), 793–794 (1994).
[Crossref]

Bogdanov, V.

Bonzon, C.

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

Boucherif, A.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Brandstetter, M.

Bronner, B.

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

Bugajski, M.

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

Capasso, F.

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Carballes, J. C.

E. Duda, J. C. Carballes, and J. Apruzzese, “Thermal resistance and temperature distribution in double-heterostructure lasers: Calculations and experimental results,” IEEE J. Quantum Electron. 15(8), 812–817 (1979).
[Crossref]

Cho, A. Y.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Darvish, S. R.

M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

De Natale, P.

Diehl, L.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Duda, E.

E. Duda, J. C. Carballes, and J. Apruzzese, “Thermal resistance and temperature distribution in double-heterostructure lasers: Calculations and experimental results,” IEEE J. Quantum Electron. 15(8), 812–817 (1979).
[Crossref]

Dupont, E.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Edamura, T.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Faist, J.

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Fathololoumi, S.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Ferrari, A.

Franco, C. D. I.

V. Spagnolo, M. S. Vitiello, C. D. I. Franco, and G. Scamarcio, “Thermal Modelling of Quantum Cascade Lasers,” in Proceedings of the International School and Conference on Photonics, 116(4) (2009).

Fuchs, F.

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

Furuta, S.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Genner, A.

Gmachl, C.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

Go, R.

Gokden, B.

M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Gornik, E.

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

Gutowski, P.

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

Hinkov, B.

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

Hinkova, B.

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

Hutchinson, A. L.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Iwinska, M.

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

Jascow, A.

Kan, H.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Karbownik, P.

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

Köhler, K.

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

Kosiel, K.

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

Kozlowska, A.

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

Laframboise, S. R.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Lendl, B.

Liang, Y.

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

Litzenberger, M.

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

Liu, H. C.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Lops, A.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[Crossref]

Luo, H.

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

Lyakh, A.

Manning, J. S.

J. S. Manning, “Thermal impedance of diode lasers: Comparison of experimental methods and a theoretical model,” J. Appl. Phys. 52(5), 3179–3184 (1981).
[Crossref]

Marano, D.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

Marona, L.

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

Masamichi, Y.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Maulini, R.

Morawiec, M.

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

Mujagic, E.

Nazorova, N.

Page, H.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

Paoli, T. L.

T. L. Paoli, “A New Technique for Measuring the Thermal Impedance of Junction Lasers,” IEEE J. Quantum Electron. 11(7), 498–503 (1975).
[Crossref]

Patel, C. K.

Patel, N.

Peretti, R.

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

Perlin, P.

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

Pflügl, C.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

Pierscinska, D.

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

Pierscinski, K.

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

Pikhtin, A.

Pluska, M.

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

Pogany, D.

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

Razeghi, M.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Scalari, G.

Scamarcio, G.

M. S. Vitiello and G. Scamarcio, “Anisotropic heat propagation velocity in quantumcascade lasers,” Appl. Phys. Lett. 96(10), 101101 (2010).
[Crossref]

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[Crossref]

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

V. Spagnolo, M. S. Vitiello, C. D. I. Franco, and G. Scamarcio, “Thermal Modelling of Quantum Cascade Lasers,” in Proceedings of the International School and Conference on Photonics, 116(4) (2009).

Schirone, L.

Schrenk, W.

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

Schwarzer, C.

Sergent, A. M.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

Sirtori, C.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Spagnolo, V.

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[Crossref]

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

V. Spagnolo, M. S. Vitiello, C. D. I. Franco, and G. Scamarcio, “Thermal Modelling of Quantum Cascade Lasers,” in Proceedings of the International School and Conference on Photonics, 116(4) (2009).

Strasser, G.

M. Brandstetter, A. Genner, C. Schwarzer, E. Mujagic, G. Strasser, and B. Lendl, “Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy,” Opt. Express 22(3), 2656–2664 (2014).
[Crossref] [PubMed]

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

Süess, M.

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

Szerling, A.

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

Thompson, G. H. B.

B. S. Bhumbra, G. H. B. Thompson, and A. P. Wright, “Thermal impedance measurement of semiconductor lasers,” Electron. Lett. 30(10), 793–794 (1994).
[Crossref]

Tomm, J. W.

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

Troccoli, M.

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Tsekoun, A.

Vitiello, M. S.

M. S. Vitiello, G. Scalari, B. Williams, and P. De Natale, “Quantum cascade lasers: 20 years of challenges,” Opt. Express 23(4), 5167–5182 (2015).
[Crossref] [PubMed]

M. S. Vitiello and G. Scamarcio, “Anisotropic heat propagation velocity in quantumcascade lasers,” Appl. Phys. Lett. 96(10), 101101 (2010).
[Crossref]

V. Spagnolo, M. S. Vitiello, C. D. I. Franco, and G. Scamarcio, “Thermal Modelling of Quantum Cascade Lasers,” in Proceedings of the International School and Conference on Photonics, 116(4) (2009).

Wagner, J.

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

Wang, Q. J.

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Weik, F.

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

Williams, B.

Wisniewski, P.

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

Wolf, J.

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

Wright, A. P.

B. S. Bhumbra, G. H. B. Thompson, and A. P. Wright, “Thermal impedance measurement of semiconductor lasers,” Electron. Lett. 30(10), 793–794 (1994).
[Crossref]

Yang, Q.

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

Ziegler, M.

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

AIP Adv. (1)

D. Pierścińska, K. Pierściński, M. Płuska, Ł. Marona, P. Wiśniewski, P. Perlin, and M. Bugajski, “Examination of thermal properties and degradation of InGaN - based diode lasers by thermoreflectance spectroscopy and focused ion beam etching,” AIP Adv. 7(7), 075107 (2017).
[Crossref]

Appl. Phys. Lett. (5)

Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, Y. Masamichi, and H. Kan, “High performance quantum cascade lasers based on three-phonon-resonance design,” Appl. Phys. Lett. 94(1), 011103 (2009).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

M. S. Vitiello and G. Scamarcio, “Anisotropic heat propagation velocity in quantumcascade lasers,” Appl. Phys. Lett. 96(10), 101101 (2010).
[Crossref]

B. Hinkova, Q. Yang, F. Fuchs, B. Bronner, K. Köhler, and J. Wagner, “Time-resolved characterization of external-cavity quantum-cascade lasers,” Appl. Phys. Lett. 94(22), 221105 (2009).
[Crossref]

C. Pflügl, M. Litzenberger, W. Schrenk, D. Pogany, E. Gornik, and G. Strasser, “Interferometric study of thermal dynamics in GaAs-based quantum-cascade lasers,” Appl. Phys. Lett. 82(11), 1664–1666 (2003).
[Crossref]

Electron. Lett. (1)

B. S. Bhumbra, G. H. B. Thompson, and A. P. Wright, “Thermal impedance measurement of semiconductor lasers,” Electron. Lett. 30(10), 793–794 (1994).
[Crossref]

IEE Proc., Optoelectron. (1)

V. Spagnolo, G. Scamarcio, D. Marano, M. Troccoli, F. Capasso, C. Gmachl, A. M. Sergent, A. L. Hutchinson, D. L. Sivco, A. Y. Cho, H. Page, C. Becker, and C. Sirtori, “Thermal characteristics of quantum-cascade lasers by micro-probe optical spectroscopy,” IEE Proc., Optoelectron. 150(4), 298–305 (2003).
[Crossref]

IEEE J. Quantum Electron. (3)

S. Fathololoumi, D. Ban, H. Luo, E. Dupont, S. R. Laframboise, A. Boucherif, and H. C. Liu, “Thermal behavior investigation of terahertz quantum-cascade lasers,” IEEE J. Quantum Electron. 44(12), 1139–1144 (2008).
[Crossref]

E. Duda, J. C. Carballes, and J. Apruzzese, “Thermal resistance and temperature distribution in double-heterostructure lasers: Calculations and experimental results,” IEEE J. Quantum Electron. 15(8), 812–817 (1979).
[Crossref]

T. L. Paoli, “A New Technique for Measuring the Thermal Impedance of Junction Lasers,” IEEE J. Quantum Electron. 11(7), 498–503 (1975).
[Crossref]

J. Appl. Phys. (3)

J. S. Manning, “Thermal impedance of diode lasers: Comparison of experimental methods and a theoretical model,” J. Appl. Phys. 52(5), 3179–3184 (1981).
[Crossref]

A. Lops, V. Spagnolo, and G. Scamarcio, “Thermal modeling of GaInAs/AlInAs quantum cascade lasers,” J. Appl. Phys. 100(4), 043109 (2006).
[Crossref]

K. Pierściński, D. Pierścińska, M. Iwińska, K. Kosiel, A. Szerling, P. Karbownik, and M. Bugajski, “Investigation of thermal properties of mid-infrared AlGaAs/GaAs quantum cascade lasers,” J. Appl. Phys. 112(4), 043112 (2012).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

D. Pierścińska, A. Kozlowska, K. Pierściński, M. Bugajski, J. W. Tomm, M. Ziegler, and F. Weik, “Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance,” J. Mater. Sci. Mater. Electron. 19(S1), 150–154 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

D. Pierścińska, Ł. Marona, K. Pierściński, P. Wiśniewski, P. Perlin, and M. Bugajski, “High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy,” Jpn. J. Appl. Phys. 56(2), 020302 (2017).
[Crossref]

New J. Phys. (1)

M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “High power quantum cascade lasers,” New J. Phys. 11(12), 125017 (2009).
[Crossref]

Opt. Express (3)

Photonics (1)

M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, and J. Faist, “Advanced Fabrication of Single-Mode and Multi-Wavelength MIR-QCLs,” Photonics 3(2), 26 (2016).
[Crossref]

Phys. Scr. (1)

M. A. Belkin and F. Capasso, “New frontiers in quantum cascade lasers: high performance room temperature terahertz sources,” Phys. Scr. 90(11), 118002 (2015).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

D. Pierścińska, K. Pierściński, M. Morawiec, P. Karbownik, P. Gutowski, and M. Bugajski, “CCD thermoreflectance spectroscopy as a tool for thermal characterization of quantum cascade lasers,” Semicond. Sci. Technol. 31(11), 115006 (2016).
[Crossref]

Other (7)

V. Spagnolo, M. S. Vitiello, C. D. I. Franco, and G. Scamarcio, “Thermal Modelling of Quantum Cascade Lasers,” in Proceedings of the International School and Conference on Photonics, 116(4) (2009).

M. Razeghi, J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, J. E. David, J. Nguyen, B. Gokden, and S. Khosravani, “Quantum cascade laser progress and outlook,” in Optically Based Biological and Chemical Sensing for Defence, vol. 5617, (International Society for Optics and Photonics, 2004.),pp. 221–233.

T. Alexei, R. Go, M. Pushkarsky, M. Razeghi, C. Kumar, and N. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” in Proceedings of the 103, no. 13 (National Academy of Sciences of the United States of America, 2006),pp. 4831–4835.

J. Melkonian, J. Petit, M. Raybaut, A. Godard, and M. Lefebvre, “Time-resolved spectral characterization of a pulsed external-cavity quantum cascade laser,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper CF2K.4.

N. N. Sirota, V. V. Novikov, and A. M. Antiukhov, Dokl. Akad. Nauk SSSR 263(1), 96–100 (1982)

U. Z. Piesbergen, Naturforschung18a, 2 141–147 (1963).

V. Palankovski, “Simulation of Heterojunction Bipolar Transistors,” Dissertation, TechnischeUniversität Wien, 2000. http://www.iue.tuwien.ac.at/phd/palankovski .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A time resolved spectra of a QCL operating in pulsed mode, spectra is shifted for clarity a). Cavity length is 2mm and waveguide width is 12μm. Voltage pulse has an amplitude of 17.03V with 2µs duration. Heat map of the time resolved spectral data, b).
Fig. 2
Fig. 2 Time resolved spectrum of the QCL after highpass, a) and lowpass filtering, b).
Fig. 3
Fig. 3 (a) Emission spectra at varied sink temperatures at 500 ns after the pulse starts. Pulse width is 5µs and duty cycle is 1%. (b) Phase and frequency shifts of the FP modes as a function of sink temperature. Inset shows FFT amplitude of the spectrum at −160°C.
Fig. 4
Fig. 4 Measured cavity temperatures with respect to time for varied sink temperatures at constant electrical input power, a) and temperature rise as a function of time for various input powers. Measured temperatures are indicated with symbols and simulated temperatures are indicated with solid lines. Estimated errors are also shown.b).
Fig. 5
Fig. 5 Square of the calculated optical mode electric field profile, E 2 ( x,y ), a), temperature distribution at t = 2µs, b) and thermal conductivities at t = 2µs c).
Fig. 6
Fig. 6 Measured temperatures as a function of time from the starting of the pulse, and the duty cycle of the pulse. Above −80C, laser does not lase.

Tables (1)

Tables Icon

Table 1 Fit parameters for functions of thermal properties used in simulations.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T avg ( t )= E ( x,y ) 2 T( x,y,t )dxdy/ E ( x,y ) 2 dxdy.
d T avg ( t=2μs, k y =2.1 )/d k x =0.06K/( W/( m.K ) ),
d T avg ( t=2μs, k x =2.1 )/d k y 27.2K/( W/( m.K ) ).

Metrics