Abstract

We present a high-repetition-rate, high-pulse-energy, high-beam-quality, and high-average-power laser system using an ultraclean closed-type stimulated-Brillouin-scattering phase-conjugate mirror (SBS-PCM). By controlling microparticles of SBS-PCM down to 40 nm, thermal load capacity of such closed-type SBS-PCM was greatly improved, which presented the best reported cleanliness. The closed-type SBS-PCM, lacking scanning wedge plates, achieved reflectivity as high as 92% and showed no optical breakdown phenomena or obvious thermal effects at a 500 Hz pulse-repetition frequency (PRF). Operation at 550 W output power, approximately 1.1 J pulse energy, and beam quality M2 of approximately 2 represents, to our knowledge, the best reported performance. Thermal phase distortion was compensated, and the maximum-output-power pulse-width compression improved from 30 ns to approximately 10 ns.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance of large aperture tapered fiber phase conjugate mirror with high pulse energy and 1-kHz repetition rate

Zhigang Zhao, Yantao Dong, Sunqiang Pan, Chong Liu, Jun Chen, Lixin Tong, Qingsong Gao, and Chun Tang
Opt. Express 20(2) 1896-1902 (2012)

High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror

Koji Tsubakimoto, Hidetsugu Yoshida, and Noriaki Miyanaga
Opt. Express 24(12) 12557-12564 (2016)

Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation

Hongli Wang, Seongwoo Cha, Hong Jin Kong, Yulei Wang, and Zhiwei Lu
Opt. Express 27(7) 9895-9905 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor, “Orbit determination accuracy requirements for collision avoidance,” in Proceeding of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting(AAS, 2001), pp.1105–1121.
  2. M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).
  3. C. H. Smith, Space Debris Tracking Using Lasers[OL], “ https://daspworkshop.org/uploads/DASP11 Proceedings/Smith_Craig.pdf ,” [03–26] (2014).
  4. G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
    [Crossref]
  5. C. H. Smith, “The EOS Space Debris Tracking System,” in Proceedings of 2006 AMOS Technical Conference (AMOS, 2007), pp.719–728.
  6. Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).
  7. X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).
  8. D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24(6), 1124–1140 (1988).
    [Crossref]
  9. V. Wang and C. R. Giuliano, “Correction of phase aberrations via stimulated Brillouin scattering,” Opt. Lett. 2(1), 4–6 (1978).
    [Crossref] [PubMed]
  10. A. Kummrow, “Effect of optical breakdown on stimulated Brillouin scattering in focused beam cells,” J. Opt. Soc. Am. B 12(6), 1006–1011 (1995).
    [Crossref]
  11. H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
    [Crossref]
  12. Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).
  13. H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36(16), 3739–3744 (1997).
    [Crossref] [PubMed]
  14. Y. F. Kir’yanov, G. G. Kochemasov, N. V. Maslov, and I. V. Shestakova, “Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams bystimulated Brillouin scattering,” IEEE J. Quantum Electron. 28(1), 58–61 (1998).
    [Crossref]
  15. N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
    [Crossref]
  16. N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
    [Crossref]
  17. K. Tsubakimoto, H. Yoshida, and N. Miyanaga, “High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror,” Opt. Express 24(12), 12557–12564 (2016).
    [Crossref] [PubMed]
  18. H. Yoshida, K. Tsubakimoto, H. Fujita, N. Miyanaga, Y. Nagata, and H. Kinoshita, “Stimulated-Brillouin-scattering via phase-conjugation-mirror for high-average-power Nd:YAG laser systems,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA_P7.
    [Crossref]
  19. Y. Wang, Z. Lv, Q. Guo, P. Wu, Z. Zheng, and W. He, “A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate,” Chin. Opt. Lett. 8(11), 1064–1066 (2010).
    [Crossref]
  20. H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, “360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28(18), 1671–1673 (2003).
    [Crossref] [PubMed]
  21. H. Yoshida and M. Nakatsuka, “High-power phase-conjugating mirror based on stimulated Brillouin scattering in liquid and solid materials,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2005), pp. 1166–1167.
    [Crossref]
  22. S. Park, S. Cha, J. Oh, H. Lee, H. Ahn, K. S. Churn, and H. J. Kong, “Coherent beam combination using self-phase locked stimulated Brillouin scattering phase conjugate mirrors with a rotating wedge for high power laser generation,” Opt. Express 24(8), 8641–8646 (2016).
    [Crossref] [PubMed]
  23. H. J. Kong, S. Park, S. Cha, H. Ahn, H. Lee, J. Oh, B. Lee, S. Choi, and J. Kim, “Current status of the development of the Kumgang laser,” Opt. Mater. Express 4(12), 2551–2558 (2014).
    [Crossref]
  24. 3M Catalogue and Product Information Datasheets—Fluorenert Liquids for Electronics Manufacturing (St. Paul,MN: 3M Center).
  25. H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
    [Crossref]

2017 (2)

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

2016 (3)

2014 (1)

2013 (1)

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

2010 (1)

2006 (1)

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

2003 (2)

H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, “360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28(18), 1671–1673 (2003).
[Crossref] [PubMed]

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
[Crossref]

1998 (1)

Y. F. Kir’yanov, G. G. Kochemasov, N. V. Maslov, and I. V. Shestakova, “Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams bystimulated Brillouin scattering,” IEEE J. Quantum Electron. 28(1), 58–61 (1998).
[Crossref]

1997 (1)

1995 (2)

A. Kummrow, “Effect of optical breakdown on stimulated Brillouin scattering in focused beam cells,” J. Opt. Soc. Am. B 12(6), 1006–1011 (1995).
[Crossref]

N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

1992 (2)

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

1988 (1)

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24(6), 1124–1140 (1988).
[Crossref]

1978 (1)

Ahn, H.

Andreev, N.

N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Andreev, N. F.

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Bai, Z. A.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Buske, I.

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

Cha, S.

Choi, S.

Churn, K. S.

Dong, X.

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).

Fan, C.

X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).

Fan, Z. W.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Friederich, F.

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

Fujita, H.

Gao, P.

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

Ge, W. Q.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Giuliano, C. R.

Guo, Q.

Han, X.

X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).

Hatae, T.

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
[Crossref]

He, W.

Y. Wang, Z. Lv, Q. Guo, P. Wu, Z. Zheng, and W. He, “A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate,” Chin. Opt. Lett. 8(11), 1064–1066 (2010).
[Crossref]

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

Kageyama, N.

Kan, H.

Kang, Z. J.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Kashiwabara, T.

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
[Crossref]

Khazanov, E. A.

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Kim, J.

Kir’yanov, Y. F.

Y. F. Kir’yanov, G. G. Kochemasov, N. V. Maslov, and I. V. Shestakova, “Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams bystimulated Brillouin scattering,” IEEE J. Quantum Electron. 28(1), 58–61 (1998).
[Crossref]

Kirchner, G.

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

Kiriyama, H.

Kitamura, S.

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
[Crossref]

Kmetik, V.

Kochemasov, G. G.

Y. F. Kir’yanov, G. G. Kochemasov, N. V. Maslov, and I. V. Shestakova, “Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams bystimulated Brillouin scattering,” IEEE J. Quantum Electron. 28(1), 58–61 (1998).
[Crossref]

Koidl, F.

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

Kong, H. J.

Kulagin, O. P.

N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Kummrow, A.

Lee, B.

Lee, H.

Li, Y.

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

Li, Z.

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

Liang, Z.

X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).

Lim, C.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Liu, H.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Liu, Y.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Lu, Z.

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

Lv, Z.

Maslov, N. V.

Y. F. Kir’yanov, G. G. Kochemasov, N. V. Maslov, and I. V. Shestakova, “Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams bystimulated Brillouin scattering,” IEEE J. Quantum Electron. 28(1), 58–61 (1998).
[Crossref]

Miyajima, H.

Miyanaga, N.

Nagai, T.

Nakatsuka, M.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
[Crossref]

H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, “360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28(18), 1671–1673 (2003).
[Crossref] [PubMed]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36(16), 3739–3744 (1997).
[Crossref] [PubMed]

H. Yoshida and M. Nakatsuka, “High-power phase-conjugating mirror based on stimulated Brillouin scattering in liquid and solid materials,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2005), pp. 1166–1167.
[Crossref]

Oh, J.

Palashov, O. V.

N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Park, H.

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Park, S.

Pasmanik, G. A.

N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Qiu, J. S.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Riede, W.

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

Rockwell, D. A.

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24(6), 1124–1140 (1988).
[Crossref]

Rodchenkov, V.

N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Shestakova, I. V.

Y. F. Kir’yanov, G. G. Kochemasov, N. V. Maslov, and I. V. Shestakova, “Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams bystimulated Brillouin scattering,” IEEE J. Quantum Electron. 28(1), 58–61 (1998).
[Crossref]

Song, Q.

X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).

Sun, J.

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

Sun, M.

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

Tang, X. X.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Tsubakimoto, K.

Völker, U.

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

Wang, H. C.

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Wang, V.

Wang, Y.

Y. Wang, Z. Lv, Q. Guo, P. Wu, Z. Zheng, and W. He, “A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate,” Chin. Opt. Lett. 8(11), 1064–1066 (2010).
[Crossref]

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

Wu, P.

Y. Wang, Z. Lv, Q. Guo, P. Wu, Z. Zheng, and W. He, “A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate,” Chin. Opt. Lett. 8(11), 1064–1066 (2010).
[Crossref]

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

Yamakawa, K.

Yamanaka, T.

Yoshida, H.

K. Tsubakimoto, H. Yoshida, and N. Miyanaga, “High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror,” Opt. Express 24(12), 12557–12564 (2016).
[Crossref] [PubMed]

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

H. Kiriyama, K. Yamakawa, T. Nagai, N. Kageyama, H. Miyajima, H. Kan, H. Yoshida, and M. Nakatsuka, “360-W average power operation with a single-stage diode-pumped Nd:YAG amplifier at a 1-kHz repetition rate,” Opt. Lett. 28(18), 1671–1673 (2003).
[Crossref] [PubMed]

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
[Crossref]

H. Yoshida, V. Kmetik, H. Fujita, M. Nakatsuka, T. Yamanaka, and K. Yoshida, “Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror,” Appl. Opt. 36(16), 3739–3744 (1997).
[Crossref] [PubMed]

H. Yoshida and M. Nakatsuka, “High-power phase-conjugating mirror based on stimulated Brillouin scattering in liquid and solid materials,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2005), pp. 1166–1167.
[Crossref]

Yoshida, K.

Zhang, H.

X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).

Zhao, Y.

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

Zheng, Z.

Y. Wang, Z. Lv, Q. Guo, P. Wu, Z. Zheng, and W. He, “A new circulating two-cell structure for stimulated Brillouin scattering phase conjugation mirrors with 1-J load and 10-Hz repetition rate,” Chin. Opt. Lett. 8(11), 1064–1066 (2010).
[Crossref]

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

Adv. Space Res. (1)

G. Kirchner, F. Koidl, F. Friederich, I. Buske, U. Völker, and W. Riede, “Laser measurements to space debris from Graz SLR station,” Adv. Space Res. 51(1), 21–24 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Wang, Z. Lu, Y. Li, P. Wu, Z. Zheng, and W. He, “Investigation on high-power load ability of stimulated Brillouin scattering phase conjugating mirror,” Appl. Phys. B 98(2–3), 391–395 (1992).

Chin. Opt. Lett. (1)

Chin. Sci. Bull. (1)

M. Sun, P. Gao, Z. Li, J. Sun, X. Dong, and Y. Zhao, “Analysis on the experiment of satellite laser ranging of defunctTiangong-1 spacecraft,” Chin. Sci. Bull. 62(24), 2796–2803 (2017).

IEEE J. Quantum Electron. (3)

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24(6), 1124–1140 (1988).
[Crossref]

Y. F. Kir’yanov, G. G. Kochemasov, N. V. Maslov, and I. V. Shestakova, “Influence of thermal defocusing on the quality of phase conjugation of Gaussian beams bystimulated Brillouin scattering,” IEEE J. Quantum Electron. 28(1), 58–61 (1998).
[Crossref]

N. F. Andreev, E. A. Khazanov, and G. A. Pasmanik, “Applications of Brillouin cells to high repetition rate solid-state lasers,” IEEE J. Quantum Electron. 28(1), 330–341 (1992).
[Crossref]

Infrared Laser Eng. (1)

X. Dong, X. Han, Q. Song, Z. Liang, C. Fan, and H. Zhang, “Research of space debris laser ranging system,” Infrared Laser Eng. 45(S2), S229002 (2016).

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

H. Yoshida, M. Nakatsuka, T. Hatae, S. Kitamura, and T. Kashiwabara, “YAG Laser Perfomance Improved by Stimulated Brillouin Scattering Phase Conjugation Mirror in Thomson Scattering Diagnostics at JT-60,” Jpn. J. Appl. Phys. 42(2A), 439–442 (2003).
[Crossref]

H. Park, C. Lim, H. Yoshida, and M. Nakatsuka, “Measurement of Stimulated Brillouin Scattering Characteristics in Heavy Fluorocarbon Liquids and Perfluoropolyether Liquids,” Jpn. J. Appl. Phys. 45(6A), 5073–5075 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (1)

N. Andreev, O. P. Kulagin, O. V. Palashov, G. A. Pasmanik, and V. Rodchenkov, “SBS of repetitively pulsed radiation and possibility of increasing the pump average power,” Proc. SPIE 2633, 476–493 (1995).
[Crossref]

Wuli Xuebao (1)

Z. W. Fan, J. S. Qiu, X. X. Tang, Z. A. Bai, Z. J. Kang, W. Q. Ge, H. C. Wang, H. Liu, and Y. Liu, “A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting,” Wuli Xuebao 66(5), 054205 (2017).

Other (6)

R. G. Gottlieb, S. J. Sponaugle, and D. E. Gaylor, “Orbit determination accuracy requirements for collision avoidance,” in Proceeding of the 11th Annual AAS/AIAA Space Flight Mechanics Meeting(AAS, 2001), pp.1105–1121.

C. H. Smith, Space Debris Tracking Using Lasers[OL], “ https://daspworkshop.org/uploads/DASP11 Proceedings/Smith_Craig.pdf ,” [03–26] (2014).

C. H. Smith, “The EOS Space Debris Tracking System,” in Proceedings of 2006 AMOS Technical Conference (AMOS, 2007), pp.719–728.

3M Catalogue and Product Information Datasheets—Fluorenert Liquids for Electronics Manufacturing (St. Paul,MN: 3M Center).

H. Yoshida and M. Nakatsuka, “High-power phase-conjugating mirror based on stimulated Brillouin scattering in liquid and solid materials,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, 2005), pp. 1166–1167.
[Crossref]

H. Yoshida, K. Tsubakimoto, H. Fujita, N. Miyanaga, Y. Nagata, and H. Kinoshita, “Stimulated-Brillouin-scattering via phase-conjugation-mirror for high-average-power Nd:YAG laser systems,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CA_P7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 MOPA-PCM system schematic diagram.FR: Faraday rotator; HP: half-wave plate; L: lens; M: mirror; HA: hard aperture; AMP: amplifier; RT: quartz rotator; and SF: spatial filter.
Fig. 2
Fig. 2 Output energies of the MOPA amplification process stages. The insets show the near- and far-field energy distributions of the final beam produced by the system.
Fig. 3
Fig. 3 Microparticle sizes in the closed type SBS-PCM with and without ultracleaning and ultrafiltration technology.
Fig. 4
Fig. 4 Schematic diagram of the pump beam transmitted and reflected from the closed-type SBS-PCM used to measure beam performance under varying degrees of cleanliness.
Fig. 5
Fig. 5 Beam cross sections of (a) pump light without the SBS-PCM, (b) transmission light with the SBS-PCM, and (c) reflected light from the SBS-PCM with normal media. Beam cross sections of (d) pump light, (e) transmission light, and (f) reflected light from the ultraclean SBS-PCM.
Fig. 6
Fig. 6 Pulse waveforms showing the pulse shapes reflected from (a) the SBS-PCM,(b) the closed-type SBS-PCM with an unclean medium, and (c) the ultraclean closed-type SBS-PCM.
Fig. 7
Fig. 7 Effects of pump light at different lens focal lengths on the thermal effects in the closed-type SBS-PCM at 500 Hz. (a) Transmitted and (b) reflected beams at f = 250 mm. (c) Transmitted and (d) reflected beams at f = 300 mm.
Fig. 8
Fig. 8 Schematic diagram of closed-type SBS-PCM used to measure reflectivity at varying repetition rates. RT: quartz rotator; and SF: spatial filter.
Fig. 9
Fig. 9 SBS phase-conjugate reflectivity under 200 Hz and 500 Hz operation.
Fig. 10
Fig. 10 Pulse-shape variations at different points in the amplification process. Pulse shapes of (a) the injected beam, (b) reflection from the SBS-PCM, (c) double amplification by Postamplifier Unit 1,and (d)single-pass amplification by Postamplifier Unit 2.
Fig. 11
Fig. 11 Intensity profiles after (a) the preamplifier, (b) single-pass propagation through Postamplifier Unit 1, (c) reflection by SBS-PCM, and (d) double-pass amplification through Postamplifier Unit 1.
Fig. 12
Fig. 12 Beam-quality M 2 factors after (a) single-pass amplification by Postamplifier Unit 1, (b) double-pass amplification with the closed-type SBS-PCM, and (c) single-pass amplification by Postamplifier Unit 2.

Tables (1)

Tables Icon

Table 1 MOPA Laser System Performance Measures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E cr  = 2πρC/( α| dn/dt | ( 2π/λ ) 2 ),

Metrics