Abstract

We demonstrate a single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. The theoretical analysis and simulation results indicate that the dissipative soliton-based optical source with a flat spectrum relieves the envelope-induced signal distortion, and its high energy spectral density helps to improve the signal-to-noise ratio, both of which are favorable for simplifying the optical front-end architecture of a photonic time-stretch digitizer. By employing a homemade dissipative soliton-based passively mode-locked erbium-doped fiber laser in a single-shot photonic time-stretch digitizer, an effective number of bits of 4.11 bits under an effective sampling rate of 100 GS/s is experimentally obtained without optical amplification in the link and pulse envelope removing process.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser

Shi-Ke Wang, Qiu-Yi Ning, Ai-Ping Luo, Zhen-Bin Lin, Zhi-Chao Luo, and Wen-Cheng Xu
Opt. Express 21(2) 2402-2407 (2013)

Sub-100-fs 1.87  GHz mode-locked fiber laser using stretched-soliton effects

W. He, M. Pang, C. R. Menyuk, and P. St. J. Russell
Optica 3(12) 1366-1372 (2016)

Optical sampling analog-to-digital converter based on two asynchronous mode-locked fiber lasers

Hongling Meng, Jianxiao Leng, Cheng Qian, and Jianye Zhao
J. Opt. Soc. Am. B 34(4) 824-830 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Walden, “Analog-to-digital converter in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering, B. W. Wah, ed. (Wiley,2008).
  2. Y. Han and B. Jalali, “One tera-sample/sec real-time transient digitizer,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005), pp. 507–509.
    [Crossref]
  3. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
    [Crossref]
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  5. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  6. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [Crossref]
  7. J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009).
    [Crossref]
  8. J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
    [Crossref]
  9. S. Weber, C. Reinheimer, and G. V. Freymann, “Magnification dependent dispersion penalty studied with resonator-based time-stretch oscilloscope,” J. Lightwave Technol. 32(20), 3618–3622 (2014).
    [Crossref]
  10. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
    [Crossref]
  11. A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
    [Crossref]
  12. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
    [Crossref]
  13. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [Crossref]
  14. T. Jannson, “Real-time Fourier transformation in dispersive optical fibers,” Opt. Lett. 8(4), 232–234 (1983).
    [Crossref] [PubMed]
  15. S. Gupta, G. C. Valley, and B. Jalali, “Distortion cancellation in time-stretch analog-to-digital converter,” J. Lightwave Technol. 25(12), 3716–3721 (2007).
    [Crossref]
  16. W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
    [Crossref]
  17. Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE T. Microw. Theory 51(7), 1886–1892 (2003).
    [Crossref]
  18. Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
    [Crossref]
  19. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  20. J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
    [Crossref]
  21. X. Wei, J. Xu, Y. Xu, L. Yu, J. Xu, B. Li, A. K. S. Lau, X. Wang, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging,” Opt. Lett. 39(23), 6593–6596 (2014).
    [Crossref] [PubMed]
  22. X. Wei, A. K. S. Lau, Y. Xu, K. K. Tsia, and K. K. Y. Wong, “28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging,” Biomed. Opt. Express 6(10), 3855–3864 (2015).
    [Crossref] [PubMed]
  23. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1), 58–73 (2008).
    [Crossref]
  24. H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
    [Crossref]
  25. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
    [Crossref]
  26. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17(25), 22401–22416 (2009).
    [Crossref] [PubMed]
  27. L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
    [Crossref] [PubMed]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007), Chap. 2.

2017 (1)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

2015 (1)

2014 (2)

2013 (3)

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

2012 (1)

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

2011 (1)

2009 (2)

2008 (2)

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1), 58–73 (2008).
[Crossref]

2007 (4)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

S. Gupta, G. C. Valley, and B. Jalali, “Distortion cancellation in time-stretch analog-to-digital converter,” J. Lightwave Technol. 25(12), 3716–3721 (2007).
[Crossref]

2005 (2)

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2003 (2)

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE T. Microw. Theory 51(7), 1886–1892 (2003).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

1999 (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

1992 (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

1983 (1)

Aditya, S.

J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
[Crossref]

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1), 58–73 (2008).
[Crossref]

Chou, J.

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Conway, J. A.

Fard, A. M.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Freymann, G. V.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

Gupta, S.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

S. Gupta, G. C. Valley, and B. Jalali, “Distortion cancellation in time-stretch analog-to-digital converter,” J. Lightwave Technol. 25(12), 3716–3721 (2007).
[Crossref]

Han, Y.

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE T. Microw. Theory 51(7), 1886–1892 (2003).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

Y. Han and B. Jalali, “One tera-sample/sec real-time transient digitizer,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005), pp. 507–509.
[Crossref]

Jalali, B.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009).
[Crossref]

S. Gupta, G. C. Valley, and B. Jalali, “Distortion cancellation in time-stretch analog-to-digital converter,” J. Lightwave Technol. 25(12), 3716–3721 (2007).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE T. Microw. Theory 51(7), 1886–1892 (2003).
[Crossref]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

Y. Han and B. Jalali, “One tera-sample/sec real-time transient digitizer,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005), pp. 507–509.
[Crossref]

Jannson, T.

Lam, H. Q.

J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
[Crossref]

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

Lau, A. K. S.

Lee, K. E. K.

J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
[Crossref]

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

Li, B.

Li, H. P.

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

Li, R. M.

Lim, P. H.

J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
[Crossref]

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, X.

Liu, Y.

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

Lu, C.

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Ng, W.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ouyang, C.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Reinheimer, C.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1), 58–73 (2008).
[Crossref]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

Rockwood, T. D.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Sefler, G. A.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

J. Chou, J. A. Conway, G. A. Sefler, G. C. Valley, and B. Jalali, “Photonic bandwidth compression front end for digital oscilloscopes,” J. Lightwave Technol. 27(22), 5073–5077 (2009).
[Crossref]

Shum, P. P.

J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
[Crossref]

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Tam, H. Y.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Tang, X. G.

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

Tsia, K. K.

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Valley, G. C.

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

Wang, X.

Weber, S.

Wei, X.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1), 58–73 (2008).
[Crossref]

Wong, J. H.

J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
[Crossref]

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

Wong, K. K. Y.

Wong, V.

J. H. Wong, H. Q. Lam, R. M. Li, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, P. P. Shum, S. H. Xu, K. Wu, and C. Ouyang, “Photonic time-stretched analog-to-digital converter amenable to continuous-time operation based on polarization modulation with balanced detection scheme,” J. Lightwave Technol. 29(20), 3099–3106 (2011).
[Crossref]

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

Wu, K.

Xia, H. D.

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

Xu, J.

Xu, S. H.

Xu, Y.

Yu, L.

Zhang, C.

Zhang, S. J.

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

Zhang, X. X.

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Appl. Phys. Lett. (1)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M=41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE Photonics Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

IEEE T. Microw. Theory (2)

Y. Han and B. Jalali, “Time-bandwidth product of the photonic time-stretched analog-to-digital converter,” IEEE T. Microw. Theory 51(7), 1886–1892 (2003).
[Crossref]

Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time-stretch A/D converter Employing phase diversity,” IEEE T. Microw. Theory 53(4), 1404–1408 (2005).
[Crossref]

J. Lightwave Technol. (5)

Laser Photonics Rev. (2)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1), 58–73 (2008).
[Crossref]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Nat. Photonics (3)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7(2), 102–112 (2013).
[Crossref]

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Eng. (1)

H. D. Xia, H. P. Li, X. X. Zhang, S. J. Zhang, X. G. Tang, and Y. Liu, “Characteristics of dissipative solitons in an all-fiber thulium-doped fiber ring laser,” Opt. Eng. 52(5), 054201 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Other (4)

J. H. Wong, H. Q. Lam, K. E. K. Lee, V. Wong, P. H. Lim, S. Aditya, and P. P. Shum, “Generation of flat supercontinuum for time-stretched analog-to-digital converters,” in Proceedings of International Quantum Electronics Conference and Conference on Lasers and Electro-optics Pacific Rim (IEEE, 2011), pp. C409.
[Crossref]

R. H. Walden, “Analog-to-digital converter in the early twenty-first century,” in Wiley Encyclopedia of Computer Science and Engineering, B. W. Wah, ed. (Wiley,2008).

Y. Han and B. Jalali, “One tera-sample/sec real-time transient digitizer,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IEEE, 2005), pp. 507–509.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007), Chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. MLL: mode-locked laser; DCF: dispersion compensation fiber; PC: polarization controller; MZM: Mach-Zehnder modulator.
Fig. 2
Fig. 2 Architecture of the dissipative soliton-based passively mode-locked erbium-doped fiber laser. PD-OIC: polarization-dependent optical integrated component; PC: polarization controller; EDF: erbium-doped fiber.
Fig. 3
Fig. 3 Output spectra of (a) the dissipative soliton and (b) the conventional soliton.
Fig. 4
Fig. 4 Digitized signals from the photonic time-stretch digitizers employing (a) the dissipative soliton and (b) the conventional soliton.
Fig. 5
Fig. 5 Fourier spectra of the digitized signal from the photonic time-stretch digitizers employing (a) the dissipative soliton and (b) the conventional soliton.
Fig. 6
Fig. 6 Digitized signals from the photonic time-stretch digitizers employing (a) the dissipative soliton and (b) the conventional soliton after removing the pulse envelope by adopting a dual-output push-pull MZM and the corresponding digital correction algorithm.
Fig. 7
Fig. 7 Fourier spectra of the digitized signal from the photonic time-stretch digitizers employing (a) the dissipative soliton and (b) the conventional soliton after removing the pulse envelope by adopting a dual-output push-pull MZM and the corresponding digital correction algorithm.
Fig. 8
Fig. 8 Output spectra of (a) the dissipative soliton and (b) the conventional soliton.
Fig. 9
Fig. 9 Output of the dissipative soliton-based photonic time-stretch digitizer. (a) Output waveform and (b) Fourier spectrum.
Fig. 10
Fig. 10 Output of the conventional soliton-based photonic time-stretch digitizer. (a) Output waveform and (b) Fourier spectrum.

Tables (5)

Tables Icon

Table 1 Fiber parameters for generating dissipative soliton

Tables Icon

Table 2 Parameters of the DCFs in the time stretch process

Tables Icon

Table 3 Fiber parameters in the dissipative soliton-based passively mode-locked fiber laser

Tables Icon

Table 4 Output parameters of the two optical sources

Tables Icon

Table 5 Parameters of the DCFs

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A x,y z + α 2 A x,y +j β 2 2 2 A x,y T 2 β 3 6 3 A x,y T 3 =jγ{ ( | A x,y | 2 + 2 3 | A y,x | 2 ) A x,y +j 1 ω 0 [ | A x,y | 2 A x,y ] T T R [ | A x,y | 2 ] T A x,y }
A outx,y = A inx,y cos[ π 4 + m 2 cos( ωT ) ]
I= 1 2 nc ε 0 A eff R PD ( | A DCF2x | 2 + | A DCF2y | 2 )
M= ( L 1 + L 2 )/ L 1
J PD-ISO =( cos 2 θ sinθcosθ cosθsinθ sin 2 θ )
J PC =( 1 0 0 exp( i φ PC ) )
A x z +α A x +δ A x T + i β 2 2 2 A x T 2 β 3 6 3 A x T 3 =iγ( | A x | 2 + 2 3 | A y | 2 ) A x + iγ 3 A y 2 A x * exp( i2Δβz )+ g 2 A x + g 2 Ω g 2 2 A x T 2
A y z +α A y δ A y T + i β 2 2 2 A y T 2 β 3 6 3 A y T 3 =iγ( | A y | 2 + 2 3 | A x | 2 ) A y + iγ 3 A x 2 A y * exp( i2Δβz )+ g 2 A y + g 2 Ω g 2 2 A y T 2
g= g 0 exp[ 1 P sat ( | A x | 2 + | A y | 2 ) dT ]

Metrics