Abstract

The enhancement of Raman signal on monocrystalline silicon gratings with varying groove depths and on porous silicon grating were studied for a highly sensitive surface enhanced Raman scattering (SERS) response. In the experiment conducted, porous silicon gratings were fabricated. Silver nanoparticles (Ag NPs) were then deposited on the porous silicon grating to enhance the Raman signal of the detective objects. Results show that the enhancement of Raman signal on silicon grating improved when groove depth increased. The enhanced performance of Raman signal on porous silicon grating was also further improved. The Rhodamine SERS response based on Ag NPs/ porous silicon grating substrates was enhanced relative to the SERS response on Ag NPs/ porous silicon substrates. Ag NPs / porous silicon grating SERS substrate system achieved a highly sensitive SERS response due to the coupling of various Raman enhancement factors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin

Yuhong Wang, Mingli Wang, Xin Sun, Guochao Shi, Jinzan Zhang, Wanli Ma, and Lijian Ren
Opt. Express 26(17) 22168-22181 (2018)

SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure

C Zhang, S Z Jiang, Y Y Huo, A H Liu, S C Xu, X Y Liu, Z C Sun, Y Y Xu, Z Li, and B Y Man
Opt. Express 23(19) 24811-24821 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
    [Crossref]
  2. R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
    [Crossref]
  3. F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
    [Crossref]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  5. W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
    [Crossref]
  6. F. M. Liu and M. Green, “Efficient SERS substrates made by electroless silver deposition into patterned silicon structures,” J. Mater. Chem. A Mater. Energy Sustain. 14(10), 1526–1532 (2004).
  7. A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256(23), 6969–6976 (2010).
    [Crossref]
  8. S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
    [Crossref]
  9. M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
    [Crossref] [PubMed]
  10. D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
    [Crossref] [PubMed]
  11. Z. Pan, A. Zavalin, A. Ueda, M. Guo, M. Groza, A. Burger, R. Mu, and S. H. Morgan, “Surface-enhanced Raman spectroscopy using silver-coated porous glass-ceramic substrates,” Appl. Spectrosc. 59(6), 782–786 (2005).
    [Crossref] [PubMed]
  12. L. Canham, Properties of Porous Silicon (INSPEC, 1997).
  13. Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
    [Crossref]
  14. S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
    [Crossref] [PubMed]
  15. H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
    [Crossref] [PubMed]
  16. A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
    [Crossref]
  17. S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
    [Crossref] [PubMed]
  18. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  19. A. Compaan, M. C. Lee, and G. J. Trott, “Phonon populations by nanosecond-pulsed Raman scattering in si,” Phys. Rev. B Condens. Matter 32(10), 6731–6741 (1985).
    [Crossref] [PubMed]
  20. S. Guddala, V. K. Dwivedi, G. Vijaya Prakash, and D. Narayana Rao, “Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity,” J. Appl. Phys. 114(22), 224309 (2013).
    [Crossref]
  21. S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
    [Crossref]
  22. A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
    [Crossref]
  23. S. M. Hossaina, S. C. S. K. Duttaa, and J. Dasa, “Stability in photoluminescence of porous silicon,” J. Lumin. 91(3–4), 195–202 (2000).
    [Crossref]
  24. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  25. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  26. S. M. Sze, Physics of Semiconductor Devices (John Wiley& Sons, 1981).
  27. H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
    [Crossref]
  28. R. Tsu, H. Shen, and M. Dutta, “Correlation of Raman and photoluminescence spectra of porous silicon,” Appl. Phys. Lett. 60(1), 112–114 (1992).
    [Crossref]
  29. Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
    [Crossref] [PubMed]
  30. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
    [Crossref] [PubMed]
  31. Y. Chu, W. Zhu, D. Wang, and K. B. Crozier, “Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate,” Opt. Express 19(21), 20054–20068 (2011).
    [Crossref] [PubMed]
  32. F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
    [Crossref]
  33. L. Zeiri, K. Rechav, Z. Porat, and Y. Zeiri, “Silver Nanoparticles Deposited on Porous Silicon as a Surface-Enhanced Raman scattering (SERS) Active Substrate,” Appl. Spectrosc. 66(3), 294–299 (2012).
    [Crossref] [PubMed]
  34. Y. Jiao, J. D. Ryckman, D. S. Koktysh, and S. M. Weiss, “Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates,” Opt. Mater. Express 3(8), 1137–1148 (2013).
    [Crossref]

2015 (2)

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
[Crossref] [PubMed]

2014 (3)

S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
[Crossref] [PubMed]

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
[Crossref]

2013 (4)

Y. Jiao, J. D. Ryckman, D. S. Koktysh, and S. M. Weiss, “Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates,” Opt. Mater. Express 3(8), 1137–1148 (2013).
[Crossref]

S. Guddala, V. K. Dwivedi, G. Vijaya Prakash, and D. Narayana Rao, “Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity,” J. Appl. Phys. 114(22), 224309 (2013).
[Crossref]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

2012 (3)

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

L. Zeiri, K. Rechav, Z. Porat, and Y. Zeiri, “Silver Nanoparticles Deposited on Porous Silicon as a Surface-Enhanced Raman scattering (SERS) Active Substrate,” Appl. Spectrosc. 66(3), 294–299 (2012).
[Crossref] [PubMed]

2011 (3)

Y. Chu, W. Zhu, D. Wang, and K. B. Crozier, “Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate,” Opt. Express 19(21), 20054–20068 (2011).
[Crossref] [PubMed]

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

2010 (4)

W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
[Crossref]

A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256(23), 6969–6976 (2010).
[Crossref]

D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
[Crossref] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

2008 (1)

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[Crossref]

2007 (1)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

2005 (1)

2004 (1)

F. M. Liu and M. Green, “Efficient SERS substrates made by electroless silver deposition into patterned silicon structures,” J. Mater. Chem. A Mater. Energy Sustain. 14(10), 1526–1532 (2004).

2003 (2)

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

2000 (1)

S. M. Hossaina, S. C. S. K. Duttaa, and J. Dasa, “Stability in photoluminescence of porous silicon,” J. Lumin. 91(3–4), 195–202 (2000).
[Crossref]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1995 (1)

1993 (1)

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

1992 (1)

R. Tsu, H. Shen, and M. Dutta, “Correlation of Raman and photoluminescence spectra of porous silicon,” Appl. Phys. Lett. 60(1), 112–114 (1992).
[Crossref]

1985 (1)

A. Compaan, M. C. Lee, and G. J. Trott, “Phonon populations by nanosecond-pulsed Raman scattering in si,” Phys. Rev. B Condens. Matter 32(10), 6731–6741 (1985).
[Crossref] [PubMed]

Ahn, J.-H.

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Al-Assiri, M. S.

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

Al-Hajry, A.

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

Al-Sayari, S. A.

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

Angelini, A.

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

Baek, D. J.

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Banaee, M. G.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Berlin, A. A.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Bondarenko, V. P.

A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256(23), 6969–6976 (2010).
[Crossref]

Bouzid, H.

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

Burger, A.

Bussolino, F.

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Chan, S.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

Chang, S. H.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Chen, L.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Chen, M. H.

Chen, Y. C.

Chiolerio, A.

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Choi, D.

D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
[Crossref] [PubMed]

Choi, S.-J.

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Choi, Y.

D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
[Crossref] [PubMed]

Choi, Y.-K.

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Chu, Y.

Y. Chu, W. Zhu, D. Wang, and K. B. Crozier, “Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate,” Opt. Express 19(21), 20054–20068 (2011).
[Crossref] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Chuang, C. J.

Compaan, A.

A. Compaan, M. C. Lee, and G. J. Trott, “Phonon populations by nanosecond-pulsed Raman scattering in si,” Phys. Rev. B Condens. Matter 32(10), 6731–6741 (1985).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, W. Zhu, D. Wang, and K. B. Crozier, “Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate,” Opt. Express 19(21), 20054–20068 (2011).
[Crossref] [PubMed]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Daniel, S.

S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
[Crossref] [PubMed]

Dasa, J.

S. M. Hossaina, S. C. S. K. Duttaa, and J. Dasa, “Stability in photoluminescence of porous silicon,” J. Lumin. 91(3–4), 195–202 (2000).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Descrovi, E.

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Digregorio, G.

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Dluhy, R. A.

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[Crossref]

Dutta, M.

R. Tsu, H. Shen, and M. Dutta, “Correlation of Raman and photoluminescence spectra of porous silicon,” Appl. Phys. Lett. 60(1), 112–114 (1992).
[Crossref]

Duttaa, S. C. S. K.

S. M. Hossaina, S. C. S. K. Duttaa, and J. Dasa, “Stability in photoluminescence of porous silicon,” J. Lumin. 91(3–4), 195–202 (2000).
[Crossref]

Dwivedi, V. K.

S. Guddala, V. K. Dwivedi, G. Vijaya Prakash, and D. Narayana Rao, “Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity,” J. Appl. Phys. 114(22), 224309 (2013).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fan, C.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Frascella, F.

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Fu, S. Y.

Gaylord, T. K.

Geobaldo, F.

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Giorgis, F.

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Grann, E. B.

Green, M.

F. M. Liu and M. Green, “Efficient SERS substrates made by electroless silver deposition into patterned silicon structures,” J. Mater. Chem. A Mater. Energy Sustain. 14(10), 1526–1532 (2004).

Groza, M.

Guddala, S.

S. Guddala, V. K. Dwivedi, G. Vijaya Prakash, and D. Narayana Rao, “Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity,” J. Appl. Phys. 114(22), 224309 (2013).
[Crossref]

Guo, M.

Harraz, F. A.

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

He, Y.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Hong, S.

D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
[Crossref] [PubMed]

Hossaina, S. M.

S. M. Hossaina, S. C. S. K. Duttaa, and J. Dasa, “Stability in photoluminescence of porous silicon,” J. Lumin. 91(3–4), 195–202 (2000).
[Crossref]

Hsu, Y. K.

Hwang, Y. G.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Ismail, A. A.

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jia, Z.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Jia, Z. H.

F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
[Crossref]

Jian, X.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Jiao, Y.

Jung Park, T.

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Kalachyova, Y.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Kang, T.

D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
[Crossref] [PubMed]

Kholostov, K. I.

A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256(23), 6969–6976 (2010).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Koktysh, D. S.

Koo, T. W.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

Koo, T.-W.

S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

Kostejn, M.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Kwon, S.

S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

Lapcak, L.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lee, E. H.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Lee, H. J.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Lee, L. P.

D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
[Crossref] [PubMed]

S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

Lee, M. C.

A. Compaan, M. C. Lee, and G. J. Trott, “Phonon populations by nanosecond-pulsed Raman scattering in si,” Phys. Rev. B Condens. Matter 32(10), 6731–6741 (1985).
[Crossref] [PubMed]

Lee, S.-T.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Lee, Y. H.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Li, H.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Li, J.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Lin, Y. G.

Liu, F. M.

F. M. Liu and M. Green, “Efficient SERS substrates made by electroless silver deposition into patterned silicon structures,” J. Mater. Chem. A Mater. Energy Sustain. 14(10), 1526–1532 (2004).

Liu, R.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Liu, W.

W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
[Crossref]

Liu, Y.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Lv, X.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Lv, X. Y.

F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
[Crossref]

Lyutakov, O.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Ma, J.

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Marchiò, S.

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Mares, D.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Matikainen, A.

S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
[Crossref] [PubMed]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Moharam, M. G.

Morgan, S. H.

Mu, R.

Nahm, K. S.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Narayana Rao, D.

S. Guddala, V. K. Dwivedi, G. Vijaya Prakash, and D. Narayana Rao, “Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity,” J. Appl. Phys. 114(22), 224309 (2013).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nuutinen, T.

S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
[Crossref] [PubMed]

Oh, D. H.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Pan, Z.

Panarin, A. Y.

A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256(23), 6969–6976 (2010).
[Crossref]

Park, K.-H.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Pommet, D. A.

Porat, Z.

Rechav, K.

Rivolo, P.

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Ryckman, J. D.

Seo, Y. H.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Seol, M.-L.

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Shen, H.

R. Tsu, H. Shen, and M. Dutta, “Correlation of Raman and photoluminescence spectra of porous silicon,” Appl. Phys. Lett. 60(1), 112–114 (1992).
[Crossref]

Shi, F. G.

F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
[Crossref]

Soster, M.

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Su, S.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Suh, E.-K.

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

Švorcík, V.

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

Terekhov, S. N.

A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256(23), 6969–6976 (2010).
[Crossref]

Tripp, R. A.

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[Crossref]

Trott, G. J.

A. Compaan, M. C. Lee, and G. J. Trott, “Phonon populations by nanosecond-pulsed Raman scattering in si,” Phys. Rev. B Condens. Matter 32(10), 6731–6741 (1985).
[Crossref] [PubMed]

Tsu, R.

R. Tsu, H. Shen, and M. Dutta, “Correlation of Raman and photoluminescence spectra of porous silicon,” Appl. Phys. Lett. 60(1), 112–114 (1992).
[Crossref]

Turunen, J.

S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
[Crossref] [PubMed]

Ueda, A.

Vahimaa, P.

S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
[Crossref] [PubMed]

Vijaya Prakash, G.

S. Guddala, V. K. Dwivedi, G. Vijaya Prakash, and D. Narayana Rao, “Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity,” J. Appl. Phys. 114(22), 224309 (2013).
[Crossref]

Virga, A.

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Wang, D.

Y. Chu, W. Zhu, D. Wang, and K. B. Crozier, “Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate,” Opt. Express 19(21), 20054–20068 (2011).
[Crossref] [PubMed]

W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Weiss, S. M.

Xu, S.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Xu, T.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Xu, W.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Ye, W.

W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
[Crossref]

Yup Lee, S.

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Zapien, A.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Zavalin, A.

Zeiri, L.

Zeiri, Y.

Zhang, H.

F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
[Crossref]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
[Crossref]

Zhao, Y. P.

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[Crossref]

Zhong, Y.

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

Zhou, F.

W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
[Crossref]

Zhou, J.

F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
[Crossref]

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Zhu, W.

ACS Nano (1)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano 4(5), 2804–2810 (2010).
[Crossref] [PubMed]

Adv. Mater. (2)

S. Chan, S. Kwon, T.-W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced raman scattering of small molecules from silver coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater. 15(19), 1595–1598 (2003).
[Crossref]

Appl. Phys. Lett. (2)

H. J. Lee, Y. H. Seo, D. H. Oh, K. S. Nahm, E.-K. Suh, Y. H. Lee, H. J. Lee, Y. G. Hwang, K.-H. Park, S. H. Chang, and E. H. Lee, “Correlation of optical and structural properties of light emitting porous silicon,” Appl. Phys. Lett. 62(8), 855–857 (1993).
[Crossref]

R. Tsu, H. Shen, and M. Dutta, “Correlation of Raman and photoluminescence spectra of porous silicon,” Appl. Phys. Lett. 60(1), 112–114 (1992).
[Crossref]

Appl. Spectrosc. (2)

Appl. Surf. Sci. (2)

A. Y. Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, “SERS-active substrates based on n-type porous silicon,” Appl. Surf. Sci. 256(23), 6969–6976 (2010).
[Crossref]

F. A. Harraz, A. A. Ismail, H. Bouzid, S. A. Al-Sayari, A. Al-Hajry, and M. S. Al-Assiri, “A Capacitive Chemical Sensor based on Porous Silicon for Detection of Polar and Non-polar Organic Solvents,” Appl. Surf. Sci. 307, 704–711 (2014).
[Crossref]

Biosens. Bioelectron. (1)

H. Zhang, Z. Jia, X. Lv, J. Zhou, L. Chen, R. Liu, and J. Ma, “Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection,” Biosens. Bioelectron. 44, 89–94 (2013).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and Propagating Surface Plasmon Co-enhanced Raman Spectroscopy Based on Evanescent Field Excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Electrochim. Acta (1)

W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, “Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application,” Electrochim. Acta 55(6), 2004–2009 (2010).
[Crossref]

J. Appl. Phys. (1)

S. Guddala, V. K. Dwivedi, G. Vijaya Prakash, and D. Narayana Rao, “Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity,” J. Appl. Phys. 114(22), 224309 (2013).
[Crossref]

J. Colloid Interface Sci. (1)

S. Daniel, A. Matikainen, J. Turunen, P. Vahimaa, and T. Nuutinen, “Uniform distribution of Ag particles upon imprinted polymer grating for Raman signal enhancement,” J. Colloid Interface Sci. 437(437), 119–123 (2015).
[Crossref] [PubMed]

J. Lumin. (1)

S. M. Hossaina, S. C. S. K. Duttaa, and J. Dasa, “Stability in photoluminescence of porous silicon,” J. Lumin. 91(3–4), 195–202 (2000).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

F. M. Liu and M. Green, “Efficient SERS substrates made by electroless silver deposition into patterned silicon structures,” J. Mater. Chem. A Mater. Energy Sustain. 14(10), 1526–1532 (2004).

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (3)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

A. Virga, P. Rivolo, F. Frascella, A. Angelini, E. Descrovi, F. Geobaldo, and F. Giorgis, “Silver Nanoparticles on Porous Silicon: Approaching Single Molecule Detection in Resonant SERS,” J. Phys. Chem. C 117(39), 20139–20145 (2013).
[Crossref]

Y. Kalachyova, D. Mares, O. Lyutakov, M. Kostejn, L. Lapcak, and V. Švorčík, “Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response,” J. Phys. Chem. C 119(17), 9506–9512 (2015).
[Crossref]

J. Raman Spectrosc. (1)

A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, and F. Giorgis, “Sers active ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide antibody assays,” J. Raman Spectrosc. 3(6), 730–736 (2012).
[Crossref]

Nano Today (2)

Y. He, S. Su, T. Xu, Y. Zhong, A. Zapien, J. Li, C. Fan, and S.-T. Lee, “Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection,” Nano Today 6(2), 122–130 (2011).
[Crossref]

R. A. Tripp, R. A. Dluhy, and Y. P. Zhao, “Novel nanostructures for SERS biosensing,” Nano Today 3(3-4), 31–37 (2008).
[Crossref]

Nanotechnology (1)

M.-L. Seol, S.-J. Choi, D. J. Baek, T. Jung Park, J.-H. Ahn, S. Yup Lee, and Y.-K. Choi, “A nanoforest structure for practical surface-enhanced Raman scattering Substrates,” Nanotechnology 23(9), 095301 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

A. Compaan, M. C. Lee, and G. J. Trott, “Phonon populations by nanosecond-pulsed Raman scattering in si,” Phys. Rev. B Condens. Matter 32(10), 6731–6741 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Physica Status Solidi Appl. Mater. (1)

F. G. Shi, Z. H. Jia, X. Y. Lv, H. Zhang, and J. Zhou, “Enhancement of the R6G fluorescence by gold nanoparticle depositions in porous silicon Bragg reflectors,” Physica Status Solidi Appl. Mater. 212(3), 662–665 (2014).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Small (1)

D. Choi, Y. Choi, S. Hong, T. Kang, and L. P. Lee, “Self-organized hexagonal-nanopore SERS array,” Small 6(16), 1741–1744 (2010).
[Crossref] [PubMed]

Other (2)

L. Canham, Properties of Porous Silicon (INSPEC, 1997).

S. M. Sze, Physics of Semiconductor Devices (John Wiley& Sons, 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) surface morphology SEM image of silicon grating; (b)-(d) the surface morphology of porous silicon grating; (c) and (d) the partial enlargement surface topography of the porous silicon grating ridge and groove; (e) and (f) the cross-sectional views of the porous silicon grating. The groove depth of the sample grating is 30nm.
Fig. 2
Fig. 2 (a)TEM image, and (b) UV-Vis absorption spectra of Ag NPs.
Fig. 3
Fig. 3 SEM images of Ag NPs deposited on (a) planar porous silicon and (b) porous silicon grating.
Fig. 4
Fig. 4 Reflection diffraction efficiencies varied with grating groove depth (the period of grating is 4μm, the duty cycle is 0.45, zeroth-order is measured).
Fig. 5
Fig. 5 The reflection specular spectra and Raman spectra obtained from silicon grating and smooth silicon. The groove depths of silicon gratings are, respectively: (a) and (e) 20nm; (b) and (f) 30nm; (c) and (g) 50nm; and (d) and (h) 500nm.
Fig. 6
Fig. 6 (a)-(d) Field distribution of gratings with different thickness(20nm, 30nm, 50nm, 500nm). The axis X is defined as the direction of the periodic arrangement of the grating, and the axis Z is defined as grating thickness.
Fig. 7
Fig. 7 Schematic diagram of the cross section of (a) the planar porous silicon, and (b) porous silicon grating.
Fig. 8
Fig. 8 (a) The specular reflection spectra, and (b) Raman spectra of the porous silicon grating and the planar porous silicon.
Fig. 9
Fig. 9 Raman spectroscopy of R6G(10-6M) on Ag NPs / porous silicon grating (the groove depth is 30nm) device, Ag NPs / porous silicon device, Ag NPs / flat silicon, and flat silicon.
Fig. 10
Fig. 10 (a) SERS of R6G(10−3nM-102 nM)on Ag NPs / porous silicon grating device, and (b) linear fitting line.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I S ~ T S T L ν S ( α S + α L ) n S n L × | e L e S χ S | 2
EF= ( I SERS /N SERS ) ( I RS /N RS )

Metrics