Abstract

We investigate transverse optical forces exerted on the endface of subwavelength-diameter (SD) optical fiber by using a finite-difference time-domain (FDTD) method. Detailed spatial distributions of transverse optical force along the fiber axis can now be accessible, based on which the dependence of transverse optical force on transverse cross sections, oblique-cut endfaces and high-order mode are carefully studied. Our numerical results demonstrate that either asymmetric cross section or oblique-cut endface would dominantly contribute to the transverse optical force and the corresponding sideways deflection of SD fiber, which is in good agreement with previous experimental observations. The novel behavior of transverse optical force by the high-order mode would give rise to new guidelines for constructing high-performance optomechanical devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical forces through guided light deflections

Darwin Palima, Andrew Rafael Bañas, Gaszton Vizsnyiczai, Lóránd Kelemen, Thomas Aabo, Pál Ormos, and Jesper Glückstad
Opt. Express 21(1) 581-593 (2013)

Optical forces in silicon subwavelength-grating waveguides

Ke Ma, Shoubao Han, Long Zhang, Yaocheng Shi, and Daoxin Dai
Opt. Express 25(25) 30876-30884 (2017)

Microstructured optical fiber photonic wires with subwavelength core diameter

Yannick K. Lizé, Eric C. Mägi, Vahid G. Ta’eed, Jeremy A. Bolger, Paul Steinvurzel, and Benjamin J. Eggleton
Opt. Express 12(14) 3209-3217 (2004)

References

  • View by:
  • |
  • |
  • |

  1. M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
    [Crossref] [PubMed]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
    [Crossref] [PubMed]
  3. M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [Crossref] [PubMed]
  4. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [Crossref] [PubMed]
  5. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
    [Crossref] [PubMed]
  6. M. Li, W. H. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
    [Crossref] [PubMed]
  7. X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17(23), 20911–20919 (2009).
    [Crossref] [PubMed]
  8. M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [Crossref]
  9. Y. Hu, Y. Xiao, Y. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
    [Crossref]
  10. Y. Liu, Y. Hu, C. Wong, and Y. Xiao, “Review of cavity optomechanical cooling,” Chin. Phys. B 22(11), 114213 (2013).
    [Crossref]
  11. F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
    [Crossref]
  12. Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
    [Crossref]
  13. J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
    [Crossref] [PubMed]
  14. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref] [PubMed]
  15. G. Brambilla, “Optical fibre nanowires and microwires: A review,” J. Opt. 12(4), 043001 (2010).
    [Crossref]
  16. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
    [Crossref]
  17. X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5), 407–428 (2013).
  18. R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
    [Crossref]
  19. W. She, J. Yu, and R. Feng, “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light,” Phys. Rev. Lett. 101(24), 243601 (2008).
    [Crossref] [PubMed]
  20. I. Brevik, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(21), 219301 (2009).
    [Crossref] [PubMed]
  21. W. She, J. Yu, and R. Feng, “A Reply to the Comment by Iver Brevik,” Phys. Rev. Lett. 103(21), 243601 (2009).
  22. M. Mansuripur, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(1), 019301 (2009).
    [Crossref] [PubMed]
  23. J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
    [Crossref] [PubMed]
  24. M. Mansuripur and A. Zakharian, “Theoretical analysis of the force on the end face of a nanofilament exerted by an outgoing light pulse,” Phys. Rev. A 80(2), 023823 (2009).
    [Crossref]
  25. I. Brevik and S. Ellingsen, “Transverse radiation force in a tailored optical fiber,” Phys. Rev. A 81(1), 011806 (2010).
    [Crossref]
  26. H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
    [Crossref]
  27. I. Brevik, “Explanation for the Transverse Radiation Force Observed on a Vertically Hanging Fiber,” Phys. Rev. A 89(2), 025802 (2014).
    [Crossref]
  28. J. Yu, C. Chen, Y. Zhai, Z. Chen, J. Zhang, L. Wu, F. Huang, and Y. Xiao, “Total longitudinal momentum in a dispersive optical waveguide,” Opt. Express 19(25), 25263–25278 (2011).
    [Crossref] [PubMed]
  29. A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
    [Crossref] [PubMed]
  30. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16(12), 8887–8895 (2008).
    [Crossref] [PubMed]
  31. Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Opt. Express 25(9), 10434–10440 (2017).
    [Crossref] [PubMed]
  32. A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media, 2012).
  33. V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
    [Crossref]
  34. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
    [Crossref]

2017 (4)

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Opt. Express 25(9), 10434–10440 (2017).
[Crossref] [PubMed]

2016 (1)

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

2014 (1)

I. Brevik, “Explanation for the Transverse Radiation Force Observed on a Vertically Hanging Fiber,” Phys. Rev. A 89(2), 025802 (2014).
[Crossref]

2013 (5)

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5), 407–428 (2013).

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Y. Hu, Y. Xiao, Y. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Y. Liu, Y. Hu, C. Wong, and Y. Xiao, “Review of cavity optomechanical cooling,” Chin. Phys. B 22(11), 114213 (2013).
[Crossref]

2012 (1)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

2011 (2)

J. Yu, C. Chen, Y. Zhai, Z. Chen, J. Zhang, L. Wu, F. Huang, and Y. Xiao, “Total longitudinal momentum in a dispersive optical waveguide,” Opt. Express 19(25), 25263–25278 (2011).
[Crossref] [PubMed]

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

2010 (2)

I. Brevik and S. Ellingsen, “Transverse radiation force in a tailored optical fiber,” Phys. Rev. A 81(1), 011806 (2010).
[Crossref]

G. Brambilla, “Optical fibre nanowires and microwires: A review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

2009 (10)

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

I. Brevik, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(21), 219301 (2009).
[Crossref] [PubMed]

W. She, J. Yu, and R. Feng, “A Reply to the Comment by Iver Brevik,” Phys. Rev. Lett. 103(21), 243601 (2009).

M. Mansuripur, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(1), 019301 (2009).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
[Crossref] [PubMed]

M. Li, W. H. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[Crossref] [PubMed]

M. Mansuripur and A. Zakharian, “Theoretical analysis of the force on the end face of a nanofilament exerted by an outgoing light pulse,” Phys. Rev. A 80(2), 023823 (2009).
[Crossref]

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17(23), 20911–20919 (2009).
[Crossref] [PubMed]

2008 (3)

S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16(12), 8887–8895 (2008).
[Crossref] [PubMed]

W. She, J. Yu, and R. Feng, “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light,” Phys. Rev. Lett. 101(24), 243601 (2008).
[Crossref] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

2007 (2)

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Angsantikul, P.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Arce, F. T.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Baehr-Jones, T.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Belal, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Bo, F.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Brambilla, G.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

G. Brambilla, “Optical fibre nanowires and microwires: A review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

Brevik, I.

I. Brevik, “Explanation for the Transverse Radiation Force Observed on a Vertically Hanging Fiber,” Phys. Rev. A 89(2), 025802 (2014).
[Crossref]

I. Brevik and S. Ellingsen, “Transverse radiation force in a tailored optical fiber,” Phys. Rev. A 81(1), 011806 (2010).
[Crossref]

I. Brevik, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(21), 219301 (2009).
[Crossref] [PubMed]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Chen, C.

Chen, S.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Chen, Z.

Ding, M.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Ding, W.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Ding, X.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Dogariu, A.

V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Ellingsen, S.

I. Brevik and S. Ellingsen, “Transverse radiation force in a tailored optical fiber,” Phys. Rev. A 81(1), 011806 (2010).
[Crossref]

Fang, W.

Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Opt. Express 25(9), 10434–10440 (2017).
[Crossref] [PubMed]

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

Feng, R.

W. She, J. Yu, and R. Feng, “A Reply to the Comment by Iver Brevik,” Phys. Rev. Lett. 103(21), 243601 (2009).

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
[Crossref] [PubMed]

W. She, J. Yu, and R. Feng, “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light,” Phys. Rev. Lett. 101(24), 243601 (2008).
[Crossref] [PubMed]

Fu, J.

Gao, D.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Gong, Q.

Y. Hu, Y. Xiao, Y. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Gu, F.

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

Guo, X.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Hochberg, M.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, Y. Xiao, Y. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Y. Liu, Y. Hu, C. Wong, and Y. Xiao, “Review of cavity optomechanical cooling,” Chin. Phys. B 22(11), 114213 (2013).
[Crossref]

Huang, F.

Huang, K. J.

Huang, Q.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Ismaeel, R.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Jiang, X.

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17(23), 20911–20919 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
[Crossref] [PubMed]

Kajorndejnukul, V.

V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Kippenberg, T. J.

Lal, R.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Lee, J.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Lee, T.

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Li, M.

M. Li, W. H. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[Crossref] [PubMed]

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Li, Q.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

Lim, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Lin, Q.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17(23), 20911–20919 (2009).
[Crossref] [PubMed]

Liu, J.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Liu, Y.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Y. Liu, Y. Hu, C. Wong, and Y. Xiao, “Review of cavity optomechanical cooling,” Chin. Phys. B 22(11), 114213 (2013).
[Crossref]

Y. Hu, Y. Xiao, Y. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

Lou, J.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Lu, J.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

Luo, S.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

Ma, X.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Ma, Z.

Mansuripur, M.

M. Mansuripur and A. Zakharian, “Theoretical analysis of the force on the end face of a nanofilament exerted by an outgoing light pulse,” Phys. Rev. A 80(2), 023823 (2009).
[Crossref]

M. Mansuripur, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(1), 019301 (2009).
[Crossref] [PubMed]

A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
[Crossref] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Moloney, J.

Monifi, F.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Nieto-Vesperinas, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Nori, F.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Özdemir, S.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Painter, O.

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17(23), 20911–20919 (2009).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
[Crossref] [PubMed]

Peng, B.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Pernice, W.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

Pernice, W. H.

M. Li, W. H. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[Crossref] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Qiu, C.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Qiu, M.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16(12), 8887–8895 (2008).
[Crossref] [PubMed]

Rahman, M.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
[Crossref] [PubMed]

X. Jiang, Q. Lin, J. Rosenberg, K. Vahala, and O. Painter, “High-Q double-disk microcavities for cavity optomechanics,” Opt. Express 17(23), 20911–20919 (2009).
[Crossref] [PubMed]

Roukes, M. L.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

She, W.

W. She, J. Yu, and R. Feng, “A Reply to the Comment by Iver Brevik,” Phys. Rev. Lett. 103(21), 243601 (2009).

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
[Crossref] [PubMed]

W. She, J. Yu, and R. Feng, “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light,” Phys. Rev. Lett. 101(24), 243601 (2008).
[Crossref] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Shi, Y.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Sirbuly, D. J.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Sukhov, S.

V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Tang, H.

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

Tang, H. X.

M. Li, W. H. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[Crossref] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Thamphiwatana, S.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Tong, L.

Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Opt. Express 25(9), 10434–10440 (2017).
[Crossref] [PubMed]

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5), 407–428 (2013).

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

Tong, L. M.

Vahala, K.

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15(25), 17172–17205 (2007).
[Crossref] [PubMed]

Villanueva, J.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Wang, S. S.

Wong, C.

Y. Liu, Y. Hu, C. Wong, and Y. Xiao, “Review of cavity optomechanical cooling,” Chin. Phys. B 22(11), 114213 (2013).
[Crossref]

Wu, L.

Wu, X.

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5), 407–428 (2013).

Xiao, Y.

Y. Liu, Y. Hu, C. Wong, and Y. Xiao, “Review of cavity optomechanical cooling,” Chin. Phys. B 22(11), 114213 (2013).
[Crossref]

Y. Hu, Y. Xiao, Y. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

J. Yu, C. Chen, Y. Zhai, Z. Chen, J. Zhang, L. Wu, F. Huang, and Y. Xiao, “Total longitudinal momentum in a dispersive optical waveguide,” Opt. Express 19(25), 25263–25278 (2011).
[Crossref] [PubMed]

Xiong, C.

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

Xu, Y.

Yang, H.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

Yang, L.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Yang, Y.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

Yang, Z.

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

Yoon, I.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Yu, H.

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

Yu, J.

J. Yu, C. Chen, Y. Zhai, Z. Chen, J. Zhang, L. Wu, F. Huang, and Y. Xiao, “Total longitudinal momentum in a dispersive optical waveguide,” Opt. Express 19(25), 25263–25278 (2011).
[Crossref] [PubMed]

W. She, J. Yu, and R. Feng, “A Reply to the Comment by Iver Brevik,” Phys. Rev. Lett. 103(21), 243601 (2009).

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
[Crossref] [PubMed]

W. She, J. Yu, and R. Feng, “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light,” Phys. Rev. Lett. 101(24), 243601 (2008).
[Crossref] [PubMed]

Zakharian, A.

M. Mansuripur and A. Zakharian, “Theoretical analysis of the force on the end face of a nanofilament exerted by an outgoing light pulse,” Phys. Rev. A 80(2), 023823 (2009).
[Crossref]

A. Zakharian, M. Mansuripur, and J. Moloney, “Radiation pressure and the distribution of electromagnetic force in dielectric media,” Opt. Express 13(7), 2321–2336 (2005).
[Crossref] [PubMed]

Zhai, Y.

Zhang, J.

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

J. Yu, C. Chen, Y. Zhai, Z. Chen, J. Zhang, L. Wu, F. Huang, and Y. Xiao, “Total longitudinal momentum in a dispersive optical waveguide,” Opt. Express 19(25), 25263–25278 (2011).
[Crossref] [PubMed]

Zhang, L.

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

Zhang, T.

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Zhou, L.

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Chin. Phys. B (1)

Y. Liu, Y. Hu, C. Wong, and Y. Xiao, “Review of cavity optomechanical cooling,” Chin. Phys. B 22(11), 114213 (2013).
[Crossref]

Front. Phys. (1)

Y. Hu, Y. Xiao, Y. Liu, and Q. Gong, “Optomechanical sensing with on-chip microcavities,” Front. Phys. 8(5), 475–490 (2013).
[Crossref]

J. Opt. (1)

G. Brambilla, “Optical fibre nanowires and microwires: A review,” J. Opt. 12(4), 043001 (2010).
[Crossref]

Laser Photonics Rev. (1)

R. Ismaeel, T. Lee, M. Ding, M. Belal, and G. Brambilla, “Optical microfiber passive components,” Laser Photonics Rev. 7(3), 350–384 (2013).
[Crossref]

Light Sci. Appl. (1)

D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, and C. Qiu, “Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects,” Light Sci. Appl. 6(9), e17039 (2017).
[Crossref]

Nanophotonics (1)

X. Wu and L. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5), 407–428 (2013).

Nat. Nanotechnol. (2)

M. Li, W. H. Pernice, and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nat. Nanotechnol. 4(6), 377–382 (2009).
[Crossref] [PubMed]

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nat. Nanotechnol. 2(2), 114–120 (2007).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Li, W. Pernice, and H. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[Crossref]

F. Monifi, J. Zhang, Ş. Özdemir, B. Peng, Y. Liu, F. Bo, F. Nori, and L. Yang, “Optomechanically induced stochastic resonance and chaos transfer between optical fields,” Nat. Photonics 10(6), 399–405 (2016).
[Crossref]

Q. Huang, J. Lee, F. T. Arce, I. Yoon, P. Angsantikul, J. Liu, Y. Shi, J. Villanueva, S. Thamphiwatana, X. Ma, L. Zhang, S. Chen, R. Lal, and D. J. Sirbuly, “Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions,” Nat. Photonics 11(6), 352–355 (2017).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Nature (3)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref] [PubMed]

M. Li, W. H. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: A tutorial,” Opt. Commun. 285(23), 4641–4647 (2012).
[Crossref]

Opt. Express (7)

Phys. Rev. A (4)

M. Mansuripur and A. Zakharian, “Theoretical analysis of the force on the end face of a nanofilament exerted by an outgoing light pulse,” Phys. Rev. A 80(2), 023823 (2009).
[Crossref]

I. Brevik and S. Ellingsen, “Transverse radiation force in a tailored optical fiber,” Phys. Rev. A 81(1), 011806 (2010).
[Crossref]

H. Yu, W. Fang, F. Gu, M. Qiu, Z. Yang, and L. Tong, “Longitudinal Lorentz force on a subwavelength-diameter optical fiber,” Phys. Rev. A 83(5), 053830 (2011).
[Crossref]

I. Brevik, “Explanation for the Transverse Radiation Force Observed on a Vertically Hanging Fiber,” Phys. Rev. A 89(2), 025802 (2014).
[Crossref]

Phys. Rev. Lett. (6)

W. She, J. Yu, and R. Feng, “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light,” Phys. Rev. Lett. 101(24), 243601 (2008).
[Crossref] [PubMed]

I. Brevik, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(21), 219301 (2009).
[Crossref] [PubMed]

W. She, J. Yu, and R. Feng, “A Reply to the Comment by Iver Brevik,” Phys. Rev. Lett. 103(21), 243601 (2009).

M. Mansuripur, “Comment on “Observation of a Push Force on the End Face of a Nanometer Silica Filament Exerted by Outgoing Light”,” Phys. Rev. Lett. 103(1), 019301 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103(10), 103601 (2009).
[Crossref] [PubMed]

J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, “Light-Induced Pulling and Pushing by the Synergic Effect of Optical Force and Photophoretic Force,” Phys. Rev. Lett. 118(4), 043601 (2017).
[Crossref] [PubMed]

Other (1)

A. W. Snyder and J. Love, Optical waveguide theory (Springer Science & Business Media, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of light scattering and output at the SD fiber endface. Schematics of simulated SD fibers structures with (b) flat end facets and (c) oblique-cut end facets with an angle of θ as depicted. Three different cross sections (d) circular, (e) elliptical, and (f) olive shaped (upper semi-circular and lower semi-elliptical) are computed in our simulations, with r 1 and r 2 depicted correspond to their dimensions. Note: the oblique-cut plane is chosen to be perpendicular to the x-z plane at the fiber end.
Fig. 2
Fig. 2 Mode profiles of quasi-y polarized fundamental modes of SD fiber with (a) circular, (b) elliptical, and (c) olive-shaped cross sections. Scale bar: 500nm. Computed optical force density components, i.e., (d) (F) x , (e) (F) y , (f) (F) z , integrated over the entire cross-sectional x-y plane and normalized to incident total power, are plotted as a function of z inside the fiber.
Fig. 3
Fig. 3 Computed transverse optical force density (F)x(integrating over the transverse cross-sectional x-y plane and normalized to incident total power) upon varying θ(a) 10°-30° and (b) 40°-90°. (c) Integrated (F)x(integrated along the z-axis)as a function of θ. (d) Lateral displacement caused by transverse optical force.
Fig. 4
Fig. 4 (a) Computed (F) x (integrating over the transverse cross-sectional x-y plane and normalized to incident total power)versus z with θ = 10°, 20°, 30°. Inset: mode profile of TE01with scale bar of 800 nm. (b) Integrated (F) x (integrated along the z-axis)as a function of θ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f ( r , t ) = ( P ) E + ( P / t ) × μ 0 H
F i = 1 P o w e r T 0 T d t f i ( r , t ) d x d y , ( i = x , y , z )

Metrics