Abstract

This study describes rapid prototype construction of small and lightweight push broom Hyper Spectral Imagers (HSI). The dispersive element housings are printed by a thermoplastic 3D printer combined with S-mount optical components and commercial off-the-shelf camera heads. Four models with a mass less than 200 g are presented with a spectral range in the visible to the near-infrared part of the electromagnetic spectrum. The bandpass is in the range from 1.4 - 5 nm. Three test experiments with motorized gimbals to stabilize attitude show that the instruments are capable of push broom spectral imaging from various platforms, including airborne drone to handheld operations.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral imaging with a liquid crystal polarization interferometer

Alex Hegyi and Joerg Martini
Opt. Express 23(22) 28742-28754 (2015)

Design of a micro-opto-electro-mechanical-system-based near-infrared hyperspectral imager

Thomas Egloff, Jens Knobbe, Stefan Sinzinger, and Heinrich Grüger
Appl. Opt. 48(34) 6583-6593 (2009)

Open-source do-it-yourself multi-color fluorescence smartphone microscopy

Yulung Sung, Fernando Campa, and Wei-Chuan Shih
Biomed. Opt. Express 8(11) 5075-5086 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Vane, Imaging Spectroscopy II (SPIE, 1987).
  2. W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE, 1997).
  3. E. Herrala and J. Okkonen, “Imaging spectrograph and camera solutions for industrial applications,” Int. J. Pattern Recognit. Artif. Intell. 10(01), 43–54 (1996).
    [Crossref]
  4. T. S. Hyvarinen, E. Herrala, and A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-in component brings spectral imaging to industrial applications,” Proc. SPIE 3302, 165–175 (1998).
    [Crossref]
  5. F. Sigernes, K. Heia, H. Nilsen, and T. Svenøe, “Imaging spectroscopy applied in the fish industry?” Norw. Soc. Image Process. Pattern Recogn. 2, 16–24 (1998).
  6. F. Sigernes, D. A. Lorentzen, K. Heia, and T. Svenøe, “Multipurpose spectral imager,” Appl. Opt. 39(18), 3143–3153 (2000).
    [Crossref] [PubMed]
  7. J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
    [Crossref]
  8. P. J. Miller, “Use of tunable liquid crystal filters to link radiometric and photometric standards,” Metrologia 28(3), 145–149 (1991).
    [Crossref]
  9. F. Sigernes, Y. Ivanov, S. Chernouss, T. Trondsen, A. Roldugin, Y. Fedorenko, B. Kozelov, A. Kirillov, I. Kornilov, V. Safargaleev, S. Holmen, M. Dyrland, D. Lorentzen, and L. Baddeley, “Hyperspectral all-sky imaging of auroras,” Opt. Express 20(25), 27650–27660 (2012).
    [Crossref] [PubMed]
  10. J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
    [Crossref]
  11. C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
    [Crossref] [PubMed]
  12. M. Arafat Hossain, J. Canning, S. Ast, K. Cook, P. J. Rutledge, and A. Jamalipour, “Combined “dual” absorption and fluorescence smartphone spectrometers,” Opt. Lett. 40(8), 1737–1740 (2015).
    [Crossref] [PubMed]
  13. T. C. Wilkes, A. J. S. McGonigle, J. R. Willmott, T. D. Pering, and J. M. Cook, “Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy,” Opt. Lett. 42(21), 4323–4326 (2017).
    [Crossref] [PubMed]
  14. L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron. 87, 686–692 (2017).
    [Crossref] [PubMed]
  15. C. Palmer and E. Loewen, Diffraction Grating Handbook (Thermo RGL, 2000).
  16. F. Sigernes, J. M. Holmes, M. Dyrland, D. A. Lorentzen, S. A. Chernous, T. Svinyu, J. Moen, and C. S. Deehr, “Absolute calibration of optical devices with a small field of view,” J. Opt. Technol. 74(10), 669–674 (2007).
    [Crossref]
  17. W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
    [Crossref]

2017 (2)

2016 (1)

J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
[Crossref]

2015 (1)

2014 (1)

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

2013 (1)

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref] [PubMed]

2012 (2)

2007 (1)

2000 (1)

1998 (2)

T. S. Hyvarinen, E. Herrala, and A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-in component brings spectral imaging to industrial applications,” Proc. SPIE 3302, 165–175 (1998).
[Crossref]

F. Sigernes, K. Heia, H. Nilsen, and T. Svenøe, “Imaging spectroscopy applied in the fish industry?” Norw. Soc. Image Process. Pattern Recogn. 2, 16–24 (1998).

1996 (1)

E. Herrala and J. Okkonen, “Imaging spectrograph and camera solutions for industrial applications,” Int. J. Pattern Recognit. Artif. Intell. 10(01), 43–54 (1996).
[Crossref]

1991 (1)

P. J. Miller, “Use of tunable liquid crystal filters to link radiometric and photometric standards,” Metrologia 28(3), 145–149 (1991).
[Crossref]

Antila, J.

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

Anzalone, N. C.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref] [PubMed]

Arafat Hossain, M.

Ast, S.

Baddeley, L.

Bater, C. W.

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

Canning, J.

Chang, Y.-C.

L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron. 87, 686–692 (2017).
[Crossref] [PubMed]

Chernous, S. A.

Chernouss, S.

Cook, J. M.

Cook, K.

Coops, N. C.

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

Dall’Ava, A.

T. S. Hyvarinen, E. Herrala, and A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-in component brings spectral imaging to industrial applications,” Proc. SPIE 3302, 165–175 (1998).
[Crossref]

de Jong, R.

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

de Jong, S. M.

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

Deehr, C. S.

Dyrland, M.

Faria, R. P.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref] [PubMed]

Fedorenko, Y.

Fossen, T. I.

J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
[Crossref]

Fusini, L.

J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
[Crossref]

Heia, K.

F. Sigernes, D. A. Lorentzen, K. Heia, and T. Svenøe, “Multipurpose spectral imager,” Appl. Opt. 39(18), 3143–3153 (2000).
[Crossref] [PubMed]

F. Sigernes, K. Heia, H. Nilsen, and T. Svenøe, “Imaging spectroscopy applied in the fish industry?” Norw. Soc. Image Process. Pattern Recogn. 2, 16–24 (1998).

Helgesen, H. H.

J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
[Crossref]

Herrala, E.

T. S. Hyvarinen, E. Herrala, and A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-in component brings spectral imaging to industrial applications,” Proc. SPIE 3302, 165–175 (1998).
[Crossref]

E. Herrala and J. Okkonen, “Imaging spectrograph and camera solutions for industrial applications,” Int. J. Pattern Recognit. Artif. Intell. 10(01), 43–54 (1996).
[Crossref]

Holmen, S.

Holmes, J. M.

Hosen, J.

J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
[Crossref]

Hyvarinen, T. S.

T. S. Hyvarinen, E. Herrala, and A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-in component brings spectral imaging to industrial applications,” Proc. SPIE 3302, 165–175 (1998).
[Crossref]

Ivanov, Y.

Jamalipour, A.

Johansen, T. A.

J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
[Crossref]

Kantojärvi, U.

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

Kirillov, A.

Kornilov, I.

Kozelov, B.

Li, L.

L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron. 87, 686–692 (2017).
[Crossref] [PubMed]

Lorentzen, D.

Lorentzen, D. A.

Mannila, R.

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

McGonigle, A. J. S.

Miller, P. J.

P. J. Miller, “Use of tunable liquid crystal filters to link radiometric and photometric standards,” Metrologia 28(3), 145–149 (1991).
[Crossref]

Moen, J.

Näkki, I.

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

Nijland, W.

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

Nilsen, H.

F. Sigernes, K. Heia, H. Nilsen, and T. Svenøe, “Imaging spectroscopy applied in the fish industry?” Norw. Soc. Image Process. Pattern Recogn. 2, 16–24 (1998).

Okkonen, J.

E. Herrala and J. Okkonen, “Imaging spectrograph and camera solutions for industrial applications,” Int. J. Pattern Recognit. Artif. Intell. 10(01), 43–54 (1996).
[Crossref]

Ollila, J.

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

Pearce, J. M.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref] [PubMed]

Pering, T. D.

Rissanen, A.

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

Roldugin, A.

Rutledge, P. J.

Saari, H.

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

Safargaleev, V.

Sigernes, F.

Sun, R.

L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron. 87, 686–692 (2017).
[Crossref] [PubMed]

Svenøe, T.

F. Sigernes, D. A. Lorentzen, K. Heia, and T. Svenøe, “Multipurpose spectral imager,” Appl. Opt. 39(18), 3143–3153 (2000).
[Crossref] [PubMed]

F. Sigernes, K. Heia, H. Nilsen, and T. Svenøe, “Imaging spectroscopy applied in the fish industry?” Norw. Soc. Image Process. Pattern Recogn. 2, 16–24 (1998).

Svinyu, T.

Trondsen, T.

Wang, L.-J.

L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron. 87, 686–692 (2017).
[Crossref] [PubMed]

Wilkes, T. C.

Willmott, J. R.

Wulder, M. A.

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

Zhang, C.

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref] [PubMed]

Agric. For. Meteorol. (1)

W. Nijland, R. de Jong, S. M. de Jong, M. A. Wulder, C. W. Bater, and N. C. Coops, “Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras,” Agric. For. Meteorol. 184, 98–106 (2014).
[Crossref]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

L.-J. Wang, Y.-C. Chang, R. Sun, and L. Li, “A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics,” Biosens. Bioelectron. 87, 686–692 (2017).
[Crossref] [PubMed]

Int. J. Pattern Recognit. Artif. Intell. (1)

E. Herrala and J. Okkonen, “Imaging spectrograph and camera solutions for industrial applications,” Int. J. Pattern Recognit. Artif. Intell. 10(01), 43–54 (1996).
[Crossref]

J. Guid. Control Dyn. (1)

J. Hosen, H. H. Helgesen, L. Fusini, T. A. Johansen, and T. I. Fossen, “A Vision-aided Nonlinear Observer for Fixed-wing Unmanned Aerial Vehicle Navigation,” J. Guid. Control Dyn. 39(8), 1777–1789 (2016).
[Crossref]

J. Opt. Technol. (1)

Metrologia (1)

P. J. Miller, “Use of tunable liquid crystal filters to link radiometric and photometric standards,” Metrologia 28(3), 145–149 (1991).
[Crossref]

Norw. Soc. Image Process. Pattern Recogn. (1)

F. Sigernes, K. Heia, H. Nilsen, and T. Svenøe, “Imaging spectroscopy applied in the fish industry?” Norw. Soc. Image Process. Pattern Recogn. 2, 16–24 (1998).

Opt. Express (1)

Opt. Lett. (2)

PLoS One (1)

C. Zhang, N. C. Anzalone, R. P. Faria, and J. M. Pearce, “Open-Source 3D-Printable Optics Equipment,” PLoS One 8(3), e59840 (2013).
[Crossref] [PubMed]

Proc. SPIE (2)

J. Antila, U. Kantojärvi, R. Mannila, A. Rissanen, I. Näkki, J. Ollila, and H. Saari, “Spectral imaging device based on a tuneable MEMS Fabry-Perot interferometer,” Proc. SPIE 8374, 8374 (2012).
[Crossref]

T. S. Hyvarinen, E. Herrala, and A. Dall’Ava, “Direct sight imaging spectrograph: a unique add-in component brings spectral imaging to industrial applications,” Proc. SPIE 3302, 165–175 (1998).
[Crossref]

Other (3)

G. Vane, Imaging Spectroscopy II (SPIE, 1987).

W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE, 1997).

C. Palmer and E. Loewen, Diffraction Grating Handbook (Thermo RGL, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 A 3D view of transmission grating holders using the Tinkercad program from the company Autodesk Inc.. Panel (A) Model 1: (1) 19.36° wedge, (2) square 12.5 × 12.5 mm2 mount chamber for a 600 grooves/mm transmission grating, (3) 12 mm diameter hole for the Collimator-slit-front-optics assembly, and (4) cylindrical 25 mm diameter detector lens holder. Panel (B) Model 2: (1) 25 × 25 mm2 square grating holder, (2) detector lens holder, (3) straight through mount holes, and (4) Collimator-slit-front-optics assembly holder.
Fig. 2
Fig. 2 Optical diagram: (1) front lens, (2) entrance slit, (3) field lens, (4) collimator lens, (5) 600 lines/mm transmission grating, (6) detector lens, (7) exit focus plane. Center detector diffraction angle β = 19.36° for wavelength λ = 552.5 nm for first spectral order (k = 1).
Fig. 3
Fig. 3 Exploded view of Hyper Spectral Imager (HSI) components: (1) front lens, (2) lock nut, (3) air slit, (4) field lens, (5) three thin lens mounts, (6) focus tube, (7) collimator lens, (8) transmission grating, (9) detector lens, (10) focus spacers, and (11) C-mount lens adapter.
Fig. 4
Fig. 4 Model 2 snap together transmission grating holder: (1) detector lens, (2) 25 × 25 mm2 square 600 grooves/mm transmission grating, (3) 3D printed grating holder, and (4) Collimator-slit-front-optics assembly.
Fig. 5
Fig. 5 Assembled prototypes. Panel (A): (1) Collimator-slit-front-optics assembly, (2) Model 1 grating holder with camera side holder plates embedded, (3) Turnigy 1/3” Sony Super HAD CCD camera, and (4) wireless video transmitter. Panel (B): (5) Snap together Model 2 grating holder, (6) camera side holder plates, (7) CamOne Infinity action camera, and (8) 3-axis motorized gimbal stabilizer by Feiyu Tech, Inc. (model MG). Panel (C): (9) uEye UI-3360CP-NIR-GL industrial camera head by Imaging Development Systems (IDS) GmbH, (10) metal strip, and (11) two straight through mounting bolts with nuts. Panel (D): (12) aluminum side plates, (13) IMX174LL CMOS camera head by The Imaging Source, LLC, and (14) USB 3 connector.
Fig. 6
Fig. 6 Spectrogram from instrument (B). Target is white paper edge illuminated by fluorescent tube (OSRAM FQ 54W/830 HO). The emissions lines of mercury (Hg) at wavelengths 404.7, 435.8 and 546.1 nm are marked. The doublet at ~580 nm is Sodium (Na). The upper part of the spectrogram is the white paper, and the lower part is a light gray colored surface (office bench).
Fig. 7
Fig. 7 Wavelength and sensitivity calibration of 3D printed Hyper Spectral Imager (HSI) - instrument (D). Panel (A): The spectra are sampled from the center horizontal row of the detector. The gain was set to zero. The blue spectrum is from a Mercury (Hg) vapour tube supplied by Edmund Optics Ltd. (SN K60-908). The red curve represents the spectrum of a fluorescent tube (OSRAM FQ 54W/830 HO). Each mercury emission line is marked according to wavelength and spectral order k. The green spectrum is a 30 second exposure of a Lambertian screen (Labsphere SRT-99-180) illuminated by a 1000W Tungsten lamp (ORIEL SN7-1275) located 8.54 m away from the screen. Black colored spectrum is the irradiance of the screen in absolute units of mW m−2 nm−1. Panel (B): The spectrogram of the fluorescent tube.
Fig. 8
Fig. 8 Drone experiment in Skarsteindalen at Andøya, Norway on the 9th of August 2016. Panel (A) shows the Octocopter operated by the Remotely Piloted Aircraft (RPA) group at the Andøya Space Center (ASC). Panel (B): Hyper Spectral Imager (HSI) – instrument (A) and the NDVI (Normalized Difference Vegetation Index) camera mounted on the 2-axis stabilized gyro platform of the drone. Background panel (C): NDVI orthomosaic mosaic photo. Yellow numbered boxes mark sampled areas of the HSI. The label (5) marks the upper left ground control point.
Fig. 9
Fig. 9 Side by side comparison between the NDVI (Normalized Difference Vegetation Index) camera and the Hyper Spectral Imager (HSI) – Instrument (A) from the drone experiment conducted at Skarsteindalen on the 9th of August 2016. The bottom axis groups the 4 recorded image scenes. The HSI (color) and the NDVI images (pinkish scaled) are tagged at the top. The HSI RGB composites are constructed by combining 10 nm bandpass images at center wavelengths 470 nm (blue), 550 nm (green) and 630 nm (red). The time of flight is at the top of each image bar in seconds.
Fig. 10
Fig. 10 Sample images from the 3D printed push broom Hyper Spectral Imager (HSI) - instrument (B). Location is at the roof of the University Centre in Svalbard (UNIS) on the 25th of September 2017. Vertical center line of the images is towards South - up the Longyearbyen valley. Each image is labeled with the center wavelength to the right. The individual images have a bandpass of 10 nm. The bottom RGB composite is constructed by combining images at center wavelengths 480 nm (blue), 550 nm (green) and 620 nm (red).
Fig. 11
Fig. 11 Handheld gimbal operation of the push broom Hyper Spectral Imager (HSI) – instrument (B). Panel (A): Target computer screen image. Panel (B): HSI RGB composite constructed by combining center wavelength images at 490 nm (blue), 552 nm (green) and 620 nm (red). Bandpass is 10 nm for each color channel.

Tables (2)

Tables Icon

Table 1 Technical specification of the Collimator-slit-front-optics assembly.

Tables Icon

Table 2 Prototypes instrumental parameters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ=( a k )sinβ.

Metrics