Abstract

We present a reconfigurable, dynamic beam steering holographic metasurface aperture to synthesize a microwave camera at K-band frequencies. The aperture consists of a 1D printed microstrip transmission line with the front surface patterned into an array of slot-shaped subwavelength metamaterial elements (or meta-elements) dynamically tuned between “ON” and “OFF” states using PIN diodes. The proposed aperture synthesizes a desired radiation pattern by converting the waveguide-mode to a free space radiation by means of a binary modulation scheme. This is achieved in a holographic manner; by interacting the waveguide-mode (reference-wave) with the metasurface layer (hologram layer). It is shown by means of full-wave simulations that using the developed metasurface aperture, the radiated wavefronts can be engineered in an all-electronic manner without the need for complex phase-shifting circuits or mechanical scanning apparatus. Using the dynamic beam steering capability of the developed antenna, we synthesize a Mills-Cross composite aperture, forming a single-frequency all-electronic microwave camera.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-frequency microwave imaging with dynamic metasurface apertures

Timothy Sleasman, Michael Boyarsky, Mohammadreza F. Imani, Thomas Fromenteze, Jonah N. Gollub, and David R. Smith
J. Opt. Soc. Am. B 34(8) 1713-1726 (2017)

Single-frequency 3D synthetic aperture imaging with dynamic metasurface antennas

Michael Boyarsky, Timothy Sleasman, Laura Pulido-Mancera, Aaron V. Diebold, Mohammadreza F. Imani, and David R. Smith
Appl. Opt. 57(15) 4123-4134 (2018)

Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures

Aaron V. Diebold, Mohammadreza F. Imani, Timothy Sleasman, and David R. Smith
Optica 5(12) 1529-1541 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  2. C. A. Balanis, Modern antenna handbook, 2nd ed. (John Wiley & Sons, 2011).
  3. G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
    [Crossref]
  4. O. Yurduseven and D. R. Smith, “Dual-Polarization Printed Holographic Multibeam Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2738–2741 (2017).
    [Crossref]
  5. M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
    [Crossref]
  6. O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access 5, 15055–15065 (2017).
    [Crossref]
  7. S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
    [Crossref]
  8. D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
    [Crossref]
  9. N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. 57(8), 56–64 (2014).
  10. E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. 59(11), 22–42 (2016).
  11. R. C. Hansen, Phased array antennas, 2nd ed. (John Wiley & Sons, 2009).
  12. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
    [Crossref]
  13. D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
    [Crossref]
  14. J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
    [Crossref]
  15. F. Qi, I. Ocket, D. Schreurs, and B. Nauwelaers, “A system-level simulator for indoor mmW SAR imaging and its applications,” Opt. Express 20(21), 23811–23820 (2012).
    [Crossref] [PubMed]
  16. J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
    [Crossref]
  17. A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).
  18. S. Withington, G. Saklatvala, and M. P. Hobson, “Partially coherent analysis of imaging and interferometric phased arrays: noise, correlations, and fluctuations,” J. Opt. Soc. Am. A 23(6), 1340–1348 (2006).
    [Crossref] [PubMed]
  19. B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
    [Crossref]
  20. T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
    [Crossref]
  21. O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
    [Crossref] [PubMed]
  22. T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25(22), 27488–27505 (2017).
    [Crossref] [PubMed]
  23. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
    [Crossref] [PubMed]
  24. O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
    [Crossref]
  25. JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
    [Crossref] [PubMed]
  26. D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
    [Crossref] [PubMed]
  27. O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).
  28. T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
    [Crossref]
  29. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996).
  30. MACOM MA4AGFCP910, https://www.macom.com/products/product-detail/MA4AGFCP910 , accessed on 20 November 2017.
  31. Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
    [Crossref] [PubMed]
  32. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
    [Crossref] [PubMed]
  33. O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
    [Crossref]
  34. D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
    [Crossref] [PubMed]
  35. O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
    [Crossref]

2017 (8)

O. Yurduseven and D. R. Smith, “Dual-Polarization Printed Holographic Multibeam Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25(22), 27488–27505 (2017).
[Crossref] [PubMed]

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref] [PubMed]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

2016 (6)

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
[Crossref]

E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. 59(11), 22–42 (2016).

2015 (6)

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

2014 (3)

N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. 57(8), 56–64 (2014).

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

2013 (1)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

2012 (3)

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

F. Qi, I. Ocket, D. Schreurs, and B. Nauwelaers, “A system-level simulator for indoor mmW SAR imaging and its applications,” Opt. Express 20(21), 23811–23820 (2012).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

2006 (1)

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

2000 (1)

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Alvarez-Lopez, Y.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Arboleya-Arboleya, A.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Arnitz, D.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Balanis, C. A.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Birtcher, C. R.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Bowen, P.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

Boyarsky, M.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25(22), 27488–27505 (2017).
[Crossref] [PubMed]

Brady, D.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Brookner, E.

E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. 59(11), 22–42 (2016).

Brunton, S. L.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Caminita, F.

G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
[Crossref]

Charvat, G. L.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

Courtney, W. E.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Delaney, W. P.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Dong, J.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

Driscoll, T.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

F. Imani, M.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

Fan, Y.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

Fenn, A. J.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Fromenteze, T.

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25(22), 27488–27505 (2017).
[Crossref] [PubMed]

Fu, Q.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

Garcia-Gonzalez, C.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Gollub, J.

Gollub, J. N.

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

Gollub, JJ. N.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Gowda, V. R.

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

Gurbuz, O. D.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Hobson, M. P.

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Hunt, J.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Imani, M. F.

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

Inac, O.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Johnson, M. C.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Kong, B.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

Ku, B. H.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kundtz, N.

N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. 57(8), 56–64 (2014).

Kundtz, N. B.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Kutz, J. N.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Las-Heras, F.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Laviada, J.

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

Lee, J. S.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Li, H.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

Lipworth, G.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Livingstone, B.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Maci, S.

G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
[Crossref]

Mancera, L. P.

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

Marks, D. L.

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref] [PubMed]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25(22), 27488–27505 (2017).
[Crossref] [PubMed]

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

Martinez-Lorenzo, J. A.

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Martini, E.

G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
[Crossref]

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Minatti, G.

G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
[Crossref]

Mrozack, A.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Nauwelaers, B.

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Ocket, I.

Odabasi, H.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

Pandi, S.

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

Peabody, J. E.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

Pedross-Engel, A.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Qi, F.

Qiao, T.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

Quivira, F.

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Ralston, T. S.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

Rappaport, C. M.

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

Rebeiz, G. M.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Reynolds, M.

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Reynolds, M. S.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Rose, A.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

Sabbadini, M.

G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
[Crossref]

Saklatvala, G.

Schejbal, V.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Schmalenberg, P.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Schreurs, D.

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

Shiozaki, K.

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

Sleasman, T.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

Smith, D.

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Smith, D. R.

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

O. Yurduseven and D. R. Smith, “Dual-Polarization Printed Holographic Multibeam Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25(22), 27488–27505 (2017).
[Crossref] [PubMed]

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

D. L. Marks, J. Gollub, and D. R. Smith, “Spatially resolving antenna arrays using frequency diversity,” J. Opt. Soc. Am. A 33(5), 899–912 (2016).
[Crossref] [PubMed]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Temme, D. H.

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Trofatter, K. P.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Trofatter, P.

Withington, S.

Yurduseven, O.

D. L. Marks, O. Yurduseven, and D. R. Smith, “Cavity-backed metasurface antennas and their application to frequency diversity imaging,” J. Opt. Soc. Am. A 34(4), 472–480 (2017).
[Crossref] [PubMed]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

O. Yurduseven and D. R. Smith, “Dual-Polarization Printed Holographic Multibeam Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

T. Fromenteze, O. Yurduseven, M. Boyarsky, J. Gollub, D. L. Marks, and D. R. Smith, “Computational polarimetric microwave imaging,” Opt. Express 25(22), 27488–27505 (2017).
[Crossref] [PubMed]

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

O. Yurduseven, J. N. Gollub, D. L. Marks, and D. R. Smith, “Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures,” Opt. Express 24(8), 8907–8925 (2016).
[Crossref] [PubMed]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. Opt. 54(31), 9343–9353 (2015).
[Crossref] [PubMed]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

Zhang, F.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

Zvolensky, T.

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. Sleasman, M. F. Imani, J. N. Gollub, and D. R. Smith, “Dynamic metamaterial aperture for microwave imaging,” Appl. Phys. Lett. 107(20), 204104 (2015).
[Crossref]

IEEE Access (2)

O. Yurduseven, J. N. Gollub, A. Rose, D. L. Marks, and D. R. Smith, “Design and simulation of a frequency-diverse aperture for imaging of human-scale targets,” IEEE Access 4, 5436–5451 (2016).
[Crossref]

O. Yurduseven, D. L. Marks, J. N. Gollub, and D. R. Smith, “Design and Analysis of a Reconfigurable Holographic Metasurface Aperture for Dynamic Focusing in the Fresnel Zone,” IEEE Access 5, 15055–15065 (2017).
[Crossref]

IEEE Antennas Propag. Mag. (2)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

D. Smith, O. Yurduseven, B. Livingstone, and V. Schejbal, “Microwave imaging using indirect holographic techniques,” IEEE Antennas Propag. Mag. 56(1), 104–117 (2014).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

O. Yurduseven and D. R. Smith, “Dual-Polarization Printed Holographic Multibeam Metasurface Antenna,” IEEE Antennas Wirel. Propag. Lett. 16, 2738–2741 (2017).
[Crossref]

O. Yurduseven, T. Fromenteze, D. L. Marks, J. N. Gollub, and D. R. Smith, “Frequency-diverse computational microwave phaseless imaging,” IEEE Antennas Wirel. Propag. Lett. 16, 2808–2811 (2017).

IEEE Microw. Wirel. Compon. Lett. (1)

O. Yurduseven, V. R. Gowda, J. N. Gollub, and D. R. Smith, “Printed aperiodic cavity for computational and microwave imaging,” IEEE Microw. Wirel. Compon. Lett. 26(5), 367–369 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

S. Pandi, C. A. Balanis, and C. R. Birtcher, “Design of scalar impedance holographic metasurfaces for antenna beam formation with desired polarization,” IEEE Trans. Antenn. Propag. 63(7), 3016–3024 (2015).
[Crossref]

G. Minatti, F. Caminita, E. Martini, M. Sabbadini, and S. Maci, “Synthesis of Modulated-Metasurface Antennas with Amplitude, Phase, and Polarization Control,” IEEE Trans. Antenn. Propag. 64(9), 3907–3919 (2016).
[Crossref]

J. Laviada, A. Arboleya-Arboleya, Y. Alvarez-Lopez, C. Garcia-Gonzalez, and F. Las-Heras, “Phaseless Synthetic Aperture Radar with Efficient Sampling for Broadband Near-Field Imaging: Theory and Validation,” IEEE Trans. Antenn. Propag. 63(2), 573–584 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001).
[Crossref]

B. H. Ku, P. Schmalenberg, O. Inac, O. D. Gurbuz, J. S. Lee, K. Shiozaki, and G. M. Rebeiz, “A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars,” IEEE Trans. Microw. Theory Tech. 62(11), 2823–2832 (2014).
[Crossref]

J. Opt. Soc. Am. A (3)

Linc. Lab. J. (1)

A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, “The development of phased array radar technology,” Linc. Lab. J. 12(2), 321–340 (2000).

Microw. J. (2)

N. Kundtz, “Next generation communications for next generation satellites,” Microw. J. 57(8), 56–64 (2014).

E. Brookner, “Metamaterial advances for radar and communications,” Microw. J. 59(11), 22–42 (2016).

Opt. Express (3)

Phys. Rev. Appl. (1)

D. R. Smith, O. Yurduseven, L. P. Mancera, P. Bowen, and N. B. Kundtz, “Analysis of a Waveguide-Fed Metasurface Antenna,” Phys. Rev. Appl. 8(5), 054048 (2017).
[Crossref]

Prog. Electromagnetics Res. (2)

J. A. Martinez-Lorenzo, F. Quivira, and C. M. Rappaport, “SAR imaging of suicide bombers wearing concealed explosive threats,” Prog. Electromagnetics Res. 125, 255–272 (2012).
[Crossref]

O. Yurduseven, M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, “Resolution of the frequency diverse metamaterial aperture imager,” Prog. Electromagnetics Res. 150, 97–107 (2015).
[Crossref]

Sci. Rep. (2)

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7, 40441 (2017).
[Crossref] [PubMed]

JJ. N. Gollub, O. Yurduseven, K. P. Trofatter, D. Arnitz, M. F. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, T. Zvolensky, G. Lipworth, D. Brady, D. L. Marks, M. S. Reynolds, and D. R. Smith, “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. Rep. 7, 42650 (2017).
[Crossref] [PubMed]

Science (1)

J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, “Metamaterial apertures for computational imaging,” Science 339(6117), 310–313 (2013).
[Crossref] [PubMed]

Other (5)

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time Through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system,” IEEE International Symposium on Phased Array Systems and Technology, 551–558 (2010).
[Crossref]

P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996).

MACOM MA4AGFCP910, https://www.macom.com/products/product-detail/MA4AGFCP910 , accessed on 20 November 2017.

R. C. Hansen, Phased array antennas, 2nd ed. (John Wiley & Sons, 2009).

C. A. Balanis, Modern antenna handbook, 2nd ed. (John Wiley & Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Metasurface antenna (W = 30 mm, L = 216 mm, a = 0.466 mm, b = 3.286 mm, c = 2.5 mm and d = 6.6 mm). (a) Bottom PCB (PCB1) (b) top PCB (PCB2) (c) PCB1 and PCB2 (shown semi-transparent) are bonded together to form the overall design. Cross-sectional views along the line A-A′ are also shown.
Fig. 2
Fig. 2 Current distribution of the slot (a) “OFF” (b) “ON”.
Fig. 3
Fig. 3 Simulated radiation patterns (dB). Meta-element states are shown for the first 25 elements; green: “ON”; red: “OFF”.
Fig. 4
Fig. 4 Simulated and measured |S11| patterns of the antenna.
Fig. 5
Fig. 5 Synthesized Mills-Cross microwave camera (a) in this depiction, receive antenna is steered from −30°(left) to 30° (right). For clarity, raster scan of the scene at Δθ= 30 0 intervals is depicted in this example. In the actual system, the antennas raster scan the scene at Δθ= 2 0 intervals, satisfying the Nyquist limit. This is shown for (b) receive antenna and (c) transmit antenna.
Fig. 6
Fig. 6 Imaging of a gun phantom (a) reconstructed image of the gun phantom (b) normalized k-space pattern produced by the synthesized Mills-Cross microwave camera. Imaging is done in Virtualizer.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g Mx1 = S MxN f Nx1 + n Mx1

Metrics