Abstract

In comparison to the great efforts made on the enhancement of image quality for tablet displays, little attention has been paid on the concept of white point. Given the increasing popularity of the light sources with chromaticities off the Planckian locus and color-tunable LED lighting, it is important to investigate human’s white perception of tablet display under different ambient lighting conditions. This study investigated the white appearance of a tablet display under 17 ambient lighting conditions, including a dark condition, seven conditions with chromaticities on the Planckian locus, and nine conditions with chromaticities off the Planckian locus, (i.e., Duv = + 0.02, −0.02, and −0.04). It was found that both the white appearance boundary defined by the fitted one-standard-deviation error ellipse and the whitest stimulus rated by the observers or identified by the bivariate Gaussian distribution were different under the various ambient lighting conditions. The optimization based on the whitest stimulus under each ambient lighting condition suggested a lower degree of chromatic adaptation under the conditions with a lower Correlated Color Temperature (CCT). For the conditions with a same CCT, a Duv of −0.02 was found to provide a higher degree of chromatic adaptation than Duv values of + 0.02 and −0.04.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Assessment of white for displays under dark- and chromatic-adapted conditions

Kyungah Choi and Hyeon-Jeong Suk
Opt. Express 24(25) 28945-28957 (2016)

Development of a whiteness formula for surface colors under an arbitrary light source

Minchen Wei, Siyuan Chen, Hsin-Pou Huang, and Ming Ronnier Luo
Opt. Express 26(14) 18171-18181 (2018)

Chromaticity of unique white in object mode

Kevin A. G. Smet, Geert Deconinck, and Peter Hanselaer
Opt. Express 22(21) 25830-25841 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Ou, P. L. Sun, H. P. Huang, and M. R. Luo, “Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer,” Color Res. Appl. 40(2), 125–134 (2015).
    [Crossref]
  2. H. P. Huang, L. C. Ou, and Y. Yuan, “Effects of age and ambient illuminance on visual comfort for reading on a mobile device,” Color Res. Appl. 42(3), 352–361 (2017).
    [Crossref]
  3. J. Wu, L. Zhang, C. Chen, G. Marcu, W. Chaohao, M. Xu, R. Motta, W. Chen, and J. Z. Zhong, “Ambient light adaptive displays,” (Google Patents, 2016).
  4. M. Wei, Y. Wang, S. Ma, and M. R. Luo, “Chromaticity and characterization of whiteness for surface colors,” Opt. Express 25(23), 27981–27994 (2017).
    [Crossref]
  5. K. A. G. Smet, “Two neutral white illumination loci based on unique white rating and degree of chromatic adaptation,” Leukos, published online (2017).
    [Crossref]
  6. K. A. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
    [Crossref] [PubMed]
  7. K. A. Smet, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
    [Crossref] [PubMed]
  8. M. Wei, S. Ma, Y. Wang, and M. R. Luo, “Evaluation of whiteness formulas for FWA and non-FWA whites,” J. Opt. Soc. Am. A 34(4), 640–647 (2017).
    [Crossref] [PubMed]
  9. L. M. Hurvich and D. Jameson, “A psychophysical study of white. I. Neutral adaptation,” J. Opt. Soc. Am. 41(8), 521–527 (1951).
    [Crossref] [PubMed]
  10. K. Honjyo and M. Nonaka, “Perception of white in a 10° field,” J. Opt. Soc. Am. 60(12), 1690–1694 (1970).
    [Crossref] [PubMed]
  11. A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
    [Crossref] [PubMed]
  12. J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
    [Crossref] [PubMed]
  13. M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
    [Crossref]
  14. I. G. Priest, “The spectral distribution of energy required to evoke the gray sensation,” J. Opt. Soc. Am. 5(2), 205–209 (1921).
    [Crossref]
  15. H. Helson and W. C. Michels, “The effect of chromatic adaptation on achromaticity,” J. Opt. Soc. Am. 38(12), 1025–1032 (1948).
    [Crossref] [PubMed]
  16. M. Langford and E. Bilissi, Langford's Advanced Photography: The Guide for Aspiring Photographers (Taylor & Francis, 2011).
  17. A. Van Hurkman, Color Correction Handbook: Professional Techniques for Video and Cinema (Pearson Education, 2013).
  18. K. Choi and H.-J. Suk, “Assessment of white for displays under dark- and chromatic-adapted conditions,” Opt. Express 24(25), 28945–28957 (2016).
    [Crossref] [PubMed]
  19. E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
    [Crossref]
  20. CIE, “Method of Measuring and Specifying Color Rendering Properties of Light Sources, 3rd.edition,” in CIE 13.3:1995, CIE, Vienna, Austria, (1995).
  21. P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
    [Crossref] [PubMed]
  22. W. Xu, M. Wei, A. K. G. Smet, and Y. Lin, “The prediction of perceived color differences by color fidelity metrics,” Light. Res. Technol. 49(7), 805–817 (2016).
    [Crossref]
  23. R. Shamey, L. M. Cárdenas, D. Hinks, and R. Woodard, “Comparison of naïve and expert subjects in the assessment of small color differences,” J. Opt. Soc. Am. A 27(6), 1482–1489 (2010).
    [Crossref] [PubMed]
  24. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
    [Crossref]
  25. M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 color appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
    [Crossref]
  26. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732–7748 (2017).
    [Crossref] [PubMed]
  27. K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350–8365 (2017).
    [Crossref] [PubMed]
  28. Q. Zhai, M. R. Luo, P. Hanselaer, and A. K. G. Smet, “Modeling incomplete chromatic adaptation and color contrast using memory color,” in Proceedings of 24th Color and Imaging Conference (2016), pp. 82–86.
  29. CIE, “Colorimetry Part 6: CIEDE2000 Color-Difference Formula,” in ISO/CIE 11664–6:2014(E), CIE, Vienna, Austria, (2014).

2017 (5)

2016 (2)

K. Choi and H.-J. Suk, “Assessment of white for displays under dark- and chromatic-adapted conditions,” Opt. Express 24(25), 28945–28957 (2016).
[Crossref] [PubMed]

W. Xu, M. Wei, A. K. G. Smet, and Y. Lin, “The prediction of perceived color differences by color fidelity metrics,” Light. Res. Technol. 49(7), 805–817 (2016).
[Crossref]

2015 (2)

L. C. Ou, P. L. Sun, H. P. Huang, and M. R. Luo, “Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer,” Color Res. Appl. 40(2), 125–134 (2015).
[Crossref]

K. A. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
[Crossref] [PubMed]

2014 (2)

K. A. Smet, D. Geert, and H. Peter, “Chromaticity of unique white in object mode,” Opt. Express 22(21), 25830–25841 (2014).
[Crossref] [PubMed]

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

2013 (1)

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

2011 (1)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

2010 (1)

2007 (1)

2006 (1)

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 color appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

1991 (1)

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

1971 (1)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

1970 (1)

1951 (1)

1948 (1)

1921 (1)

Burns, G. J.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Cárdenas, L. M.

Choi, K.

Cui, G.

P. A. García, R. Huertas, M. Melgosa, and G. Cui, “Measurement of the relationship between perceived and computed color differences,” J. Opt. Soc. Am. A 24(7), 1823–1829 (2007).
[Crossref] [PubMed]

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 color appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Deconinck, G.

K. A. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Dikel, E. E.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Freyssinier, J. P.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

García, P. A.

Geert, D.

Hanselaer, P.

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732–7748 (2017).
[Crossref] [PubMed]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350–8365 (2017).
[Crossref] [PubMed]

K. A. Smet, G. Deconinck, and P. Hanselaer, “Chromaticity of unique white in illumination mode,” Opt. Express 23(10), 12488–12495 (2015).
[Crossref] [PubMed]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Q. Zhai, M. R. Luo, P. Hanselaer, and A. K. G. Smet, “Modeling incomplete chromatic adaptation and color contrast using memory color,” in Proceedings of 24th Color and Imaging Conference (2016), pp. 82–86.

Helson, H.

Hinks, D.

Honjyo, K.

Huang, H. P.

H. P. Huang, L. C. Ou, and Y. Yuan, “Effects of age and ambient illuminance on visual comfort for reading on a mobile device,” Color Res. Appl. 42(3), 352–361 (2017).
[Crossref]

L. C. Ou, P. L. Sun, H. P. Huang, and M. R. Luo, “Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer,” Color Res. Appl. 40(2), 125–134 (2015).
[Crossref]

Huertas, R.

Hurvich, L. M.

Jameson, D.

Li, C.

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 color appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Lin, Y.

W. Xu, M. Wei, A. K. G. Smet, and Y. Lin, “The prediction of perceived color differences by color fidelity metrics,” Light. Res. Technol. 49(7), 805–817 (2016).
[Crossref]

Luo, M. R.

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part I: neutral illuminants,” Opt. Express 25(7), 7732–7748 (2017).
[Crossref] [PubMed]

K. A. G. Smet, Q. Zhai, M. R. Luo, and P. Hanselaer, “Study of chromatic adaptation using memory color matches, Part II: colored illuminants,” Opt. Express 25(7), 8350–8365 (2017).
[Crossref] [PubMed]

M. Wei, Y. Wang, S. Ma, and M. R. Luo, “Chromaticity and characterization of whiteness for surface colors,” Opt. Express 25(23), 27981–27994 (2017).
[Crossref]

M. Wei, S. Ma, Y. Wang, and M. R. Luo, “Evaluation of whiteness formulas for FWA and non-FWA whites,” J. Opt. Soc. Am. A 34(4), 640–647 (2017).
[Crossref] [PubMed]

L. C. Ou, P. L. Sun, H. P. Huang, and M. R. Luo, “Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer,” Color Res. Appl. 40(2), 125–134 (2015).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 color appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Q. Zhai, M. R. Luo, P. Hanselaer, and A. K. G. Smet, “Modeling incomplete chromatic adaptation and color contrast using memory color,” in Proceedings of 24th Color and Imaging Conference (2016), pp. 82–86.

Ma, S.

Mancini, S.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Melgosa, M.

Michels, W. C.

Newsham, G. R.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Nonaka, M.

Ou, L. C.

H. P. Huang, L. C. Ou, and Y. Yuan, “Effects of age and ambient illuminance on visual comfort for reading on a mobile device,” Color Res. Appl. 42(3), 352–361 (2017).
[Crossref]

L. C. Ou, P. L. Sun, H. P. Huang, and M. R. Luo, “Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer,” Color Res. Appl. 40(2), 125–134 (2015).
[Crossref]

Peter, H.

Pointer, M. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Priest, I. G.

Rea, M. S.

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

Ryckaert, W. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

Shamey, R.

Smet, A. K. G.

W. Xu, M. Wei, A. K. G. Smet, and Y. Lin, “The prediction of perceived color differences by color fidelity metrics,” Light. Res. Technol. 49(7), 805–817 (2016).
[Crossref]

Q. Zhai, M. R. Luo, P. Hanselaer, and A. K. G. Smet, “Modeling incomplete chromatic adaptation and color contrast using memory color,” in Proceedings of 24th Color and Imaging Conference (2016), pp. 82–86.

Smet, K. A.

Smet, K. A. G.

Suk, H.-J.

Sun, P. L.

L. C. Ou, P. L. Sun, H. P. Huang, and M. R. Luo, “Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer,” Color Res. Appl. 40(2), 125–134 (2015).
[Crossref]

Valberg, A.

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

Veitch, J. A.

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Walraven, J.

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

Wang, Y.

Wei, M.

Werner, J. S.

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

Woodard, R.

Xu, W.

W. Xu, M. Wei, A. K. G. Smet, and Y. Lin, “The prediction of perceived color differences by color fidelity metrics,” Light. Res. Technol. 49(7), 805–817 (2016).
[Crossref]

Yuan, Y.

H. P. Huang, L. C. Ou, and Y. Yuan, “Effects of age and ambient illuminance on visual comfort for reading on a mobile device,” Color Res. Appl. 42(3), 352–361 (2017).
[Crossref]

Zhai, Q.

Color Res. Appl. (5)

L. C. Ou, P. L. Sun, H. P. Huang, and M. R. Luo, “Visual comfort as a function of lightness difference between text and background: A cross-age study using an LCD and a tablet computer,” Color Res. Appl. 40(2), 125–134 (2015).
[Crossref]

H. P. Huang, L. C. Ou, and Y. Yuan, “Effects of age and ambient illuminance on visual comfort for reading on a mobile device,” Color Res. Appl. 42(3), 352–361 (2017).
[Crossref]

M. S. Rea and J. P. Freyssinier, “White lighting,” Color Res. Appl. 38(2), 82–92 (2013).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Colour appearance rating of familiar real objects,” Color Res. Appl. 36(3), 192–200 (2011).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform color spaces based on CIECAM02 color appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

Leukos (1)

E. E. Dikel, G. J. Burns, J. A. Veitch, S. Mancini, and G. R. Newsham, “Preferred chromaticity of color-tunable LED lighting,” Leukos 10(2), 101–115 (2014).
[Crossref]

Light. Res. Technol. (1)

W. Xu, M. Wei, A. K. G. Smet, and Y. Lin, “The prediction of perceived color differences by color fidelity metrics,” Light. Res. Technol. 49(7), 805–817 (2016).
[Crossref]

Opt. Express (6)

Vision Res. (2)

A. Valberg, “A method for the precise determination of achromatic colours including white,” Vision Res. 11(2), 157–160 (1971).
[Crossref] [PubMed]

J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31(12), 2185–2193 (1991).
[Crossref] [PubMed]

Other (7)

K. A. G. Smet, “Two neutral white illumination loci based on unique white rating and degree of chromatic adaptation,” Leukos, published online (2017).
[Crossref]

J. Wu, L. Zhang, C. Chen, G. Marcu, W. Chaohao, M. Xu, R. Motta, W. Chen, and J. Z. Zhong, “Ambient light adaptive displays,” (Google Patents, 2016).

M. Langford and E. Bilissi, Langford's Advanced Photography: The Guide for Aspiring Photographers (Taylor & Francis, 2011).

A. Van Hurkman, Color Correction Handbook: Professional Techniques for Video and Cinema (Pearson Education, 2013).

Q. Zhai, M. R. Luo, P. Hanselaer, and A. K. G. Smet, “Modeling incomplete chromatic adaptation and color contrast using memory color,” in Proceedings of 24th Color and Imaging Conference (2016), pp. 82–86.

CIE, “Colorimetry Part 6: CIEDE2000 Color-Difference Formula,” in ISO/CIE 11664–6:2014(E), CIE, Vienna, Austria, (2014).

CIE, “Method of Measuring and Specifying Color Rendering Properties of Light Sources, 3rd.edition,” in CIE 13.3:1995, CIE, Vienna, Austria, (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Photograph taken from the observer’s eye position. The observers fixed their chin on a chin rest.
Fig. 2
Fig. 2 The chromaticity coordinates of the ambient lighting conditions and the stimuli that were presented on the iPad in CIE1976 UCS. (a) the chromaticity coordinates of the ambient lighting conditions; (b) the chromaticity coordinates and the luminance of the stimuli that were presented on the iPad.
Fig. 3
Fig. 3 The histogram of the STRESS values of the 63 observers for characterizing the intra-observer variations.
Fig. 4
Fig. 4 Correlation between the two judgements made by the observers
Fig. 5
Fig. 5 The one-standard-deviation error ellipses for the iPad stimuli that were judged as white under different ambient lighting conditions (a) the dark ambient condition and the conditions with chromaticities on the Planckian locus from 2500 to 6500 K; (b) the 2700 K ambient lighting conditions; (c) the 3000 K ambient lighting conditions; (d) the 3500 K ambient lighting conditions.
Fig. 6
Fig. 6 The chromaticity coordinates of the whitest stimulus rated by the observers (labeled with red circle) and estimated by the fitted bivariate Gaussian distribution W(u’,v’) (labeled with blue circle) and the chromaticity coordinates of the ambient lighting (labeled with red cross).
Fig. 7
Fig. 7 The fitted bivariate Gaussian distribution W(u’,v’) for estimating the degree of whiteness when the ambient lighting condition was dark. Same procedure was followed for each ambient lighting condition with the estimated center (uc’,vc’) being labeled with a red dot. Table 4 summarizes the (uc’,vc’) and the corresponding CCT and Duv.
Fig. 8
Fig. 8 The chromaticity coordinates (a’,b’) of the whitest stimulus under each ambient lighting condition in CAM02-UCS, with the solid lines for the ambient lighting conditions with a same Duv and the dash lines for those with a same CCT.
Fig. 9
Fig. 9 The optimized degree of chromatic adaptation D under each ambient lighting condition. The point highlighted by the arrow represents the ambient lighting condition with a CCT of 2700 K and a Duv of −0.02 could be due to the experimental limitation, as explained in Section 3.4.

Tables (4)

Tables Icon

Table 1 Colorimetric characteristics of the 17 ambient lighting conditions.

Tables Icon

Table 2 The STRESS values of the 17 ambient lighting conditions for characterizing the inter-observer variations.

Tables Icon

Table 3 Parameters of the one-standard-deviation error ellipses, shown in Fig. 6, for defining the white boundary under each ambient lighting condition

Tables Icon

Table 4 The estimated chromaticity coordinates of the whitest stimulus using the fitted bivariate Gaussian distribution and the corresponding CCT and Duv and the Pearson correlation coefficient between the whiteness percentage values estimated using the fitted bivariate Gaussian distribution and rated by the observers under each ambient lighting condition.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W( u , v )= a 1 + a 2 exp( 1 2 d 2 ( u , v ) )

Metrics