Abstract

Narrow linewidth and high intensity of the fluorescence spectra are two important elements to improve the accuracy and efficiency of related practical measurements, but so far they have not been achievable simultaneously. We propose a new approach to sharpen the linewidth and to heighten the intensity simultaneously. Rather than double coherent mechanisms, it uses the spontaneous emission of inverted atoms in a cavity below the threshold as a resource for feedback control. The spontaneous feedback is simpler in principle and easier to realize technologically, and represents a kind of new way of controlling spontaneous emission.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Steady-state resonance fluorescence spectrum of a two-level atom in a cavity

Helen Freedhoff and Tran Quang
J. Opt. Soc. Am. B 10(8) 1337-1346 (1993)

Fluorescent spectrum of a single atom in a cavity with injected squeezed vacuum

Perry R. Rice and Leno M. Pedrotti
J. Opt. Soc. Am. B 9(11) 2008-2014 (1992)

Mechanical effects of light in optical resonators

Peter Domokos and Helmut Ritsch
J. Opt. Soc. Am. B 20(5) 1098-1130 (2003)

References

  • View by:
  • |
  • |
  • |

  1. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).
  2. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  3. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
    [Crossref]
  4. P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer, 2007).
  5. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).
    [Crossref]
  6. H. J. Carmichael, Statistical Methods in Quantum Optics, 2nd ed. (Springer, 2002).
  7. R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).
  8. B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev. 188, 1969–1975 (1969).
    [Crossref]
  9. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).
  10. P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
    [Crossref]
  11. M. Lewenstein, T. W. Mossberg, and R. J. Glauber, “Dynamical suppression of spontaneous emission,” Phys. Rev. Lett. 59, 775–778 (1987).
    [Crossref] [PubMed]
  12. D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
    [Crossref] [PubMed]
  13. For an overview, see Cavity Quantum Electrodynamics, edited by P. R. Berman, ed. (Academic, 1994).
  14. E. Arimondo, Progress in Optics, Vol. 35, E. Wolf, ed. (Elsevier Science, 1996), pp. 257–354.
    [Crossref]
  15. S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
    [Crossref] [PubMed]
  16. H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1034 (1996).
    [Crossref] [PubMed]
  17. L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
    [Crossref]
  18. S. M. Barnett and R. Loudon, “Sum rule for modified spontaneous emission rates,” Phys. Rev. Lett. 77, 2444–2446 (1996).
    [Crossref] [PubMed]
  19. P. Mataloni, E. De Angelis, and F. De Martini, “Bose-Einstein partition statistics in superradiant spontaneous emission,” Phys. Rev. Lett. 85, 1420–1423 (2000).
    [Crossref] [PubMed]
  20. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
    [Crossref] [PubMed]
  21. E. Frishman and M. Shapiro, “Complete suppression of spontaneous decay of a manifold of states by infrequent interruptions,” Phys. Rev. Lett. 87, 253001 (2001).
    [Crossref] [PubMed]
  22. E. Frishman and M. Shapiro, “Suppression of the spontaneous emission of atoms and molecules,” Phys. Rev. A 68, 032717 (2003).
    [Crossref]
  23. D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010).
    [Crossref] [PubMed]
  24. T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
    [Crossref]
  25. E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
    [Crossref]
  26. M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
    [Crossref] [PubMed]
  27. M. R. Jorgensen, Jeremy W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
    [Crossref] [PubMed]
  28. P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
    [Crossref] [PubMed]
  29. H. Freedhoff and T. Quang, “Ultrasharp lines in the absorption and fluorescence spectra of an atom in a cavity,” Phys. Rev. Lett. 72, 474–477 (1994).
    [Crossref] [PubMed]
  30. P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995–3998 (1996).
    [Crossref] [PubMed]
  31. C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307–1310 (1999).
    [Crossref]
  32. A. González-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
    [Crossref] [PubMed]
  33. M. O. Scully, “Single Photon Subradiance: Quantum control of spontaneous emission and ultrafast readout,” Phys. Rev. Lett. 115, 243602 (2015).
    [Crossref] [PubMed]
  34. A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).
  35. S. J. Masson, M. D. Barrett, and S. Parkins, “Cavity QED engineering of spin dynamics and squeezing in a spinor gas,” Phys. Rev. Lett. 119, 213601 (2017).
    [Crossref] [PubMed]
  36. I. M. Mirza, S. J. van Enk, and H. J. Kimble, “Single-photon time-dependent spectra in coupled cavity arrays,” J. Opt. Soc. Am. B 30, 2640–2649 (2013).
    [Crossref]
  37. I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114, 24004 (2016).
    [Crossref]
  38. S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, “Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system,” Phys. Rev. A 91, 023829 (2015).
    [Crossref]
  39. M. Bradford and Jung-Tsung Shen, “Spontaneous emission in cavity QED with a terminated waveguide,” Phys. Rev. A 87, 063830 (2013).
    [Crossref]
  40. J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
    [Crossref]
  41. W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a large cloud of cold atoms,” Phys. Rev. Lett. 116, 083601 (2016).
    [Crossref] [PubMed]
  42. M. O. Araújo, I. Krešié, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117, 073002 (2016).
    [Crossref] [PubMed]
  43. M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
    [Crossref]
  44. X. M. Hu and J. S. Peng, “Quantum interference from spontaneous decay in Lambda systems: realization in the dressed-state picture,” J. Phys. B: At. Mol. Opt. Phys. 33, 921–931 (2000).
    [Crossref]
  45. H. Haken, “A nonlinear theory of laser noise and coherence. I,” Z. Phys. 181, 96–124 (1964).
    [Crossref]
  46. W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
    [Crossref]
  47. J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II,” Phys. Rev. 129, 481–485 (1963).
    [Crossref]
  48. M. Lax and W. H. Louisell, “Quantum noise. XII. Density-operator treatment of field and population fluctuations,” Phys. Rev. 185, 568–591 (1969).
    [Crossref]
  49. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1990).
  50. M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).
  51. R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
    [Crossref]
  52. H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S. Hassan, “Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity,” Phys. Rev. A 27, 3112–3128 (1983).
    [Crossref]
  53. M. D. Reid, “Quantum theory of optical bistability without adiabatic elimination,” Phys. Rev. A 37, 4792–4818 (1988).
    [Crossref]
  54. A. Dantan and M. Pinard, “Quantum-state transfer between fields and atoms in electromagnetically induced transparency,” Phys. Rev. A 69, 043810 (2004).
    [Crossref]
  55. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
    [Crossref]
  56. M. Tavis and F. W. Cummings, “Exact solution for an N-moleculeradiation-field hamiltonian,” Phys. Rev. 170, 379–384 (1968).
    [Crossref]
  57. M. Tavis and F. W. Cummings, “Approximate solutions for an N-molecule-radiation-field hamiltonian,” Phys. Rev. 188, 692–695 (1969).
    [Crossref]
  58. C. M. Savage, “Resonance fluorescence spectrum of an atom strongly coupled to a cavity,” Phys. Rev. Lett. 63, 1376–1379 (1989).
    [Crossref] [PubMed]
  59. Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
    [Crossref] [PubMed]
  60. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
    [Crossref] [PubMed]
  61. P. Zhou and S. Swain, “Dynamics of a driven two-level atom coupled to a frequency-tunable cavity,” Phys. Rev. A 58, 1515–1530 (1998).
    [Crossref]
  62. H. Freedhoff and T. Quang, “Steady-state resonance fluorescence spectrum of a two-level atom in a cavity,” J. Opt. Soc. Am. B 10, 1337–1346 (1993).
    [Crossref]
  63. A. Lezama, Y. Zhu, S. Morin, and T. W. Mossberg, “Cavity-perturbed strong-field resonance fluorescence,” Phys. Rev. A 39, R2754–R2757 (1989).
    [Crossref]
  64. G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: Entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008).
    [Crossref]
  65. J. L. McHale, Molecular Spectroscopy (Prentice-Hall, 1999).
  66. D. J. Gauthier, Q. Wu, S. E. Morin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464–467 (1992).
    [Crossref] [PubMed]
  67. W. Lange and H. Walther, “Observation of dynamic suppression of spontaneous emission in a strongly driven cavity,” Phys. Rev. A 48, 4551–4554 (1993).
    [Crossref] [PubMed]

2017 (3)

A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).

S. J. Masson, M. D. Barrett, and S. Parkins, “Cavity QED engineering of spin dynamics and squeezing in a spinor gas,” Phys. Rev. Lett. 119, 213601 (2017).
[Crossref] [PubMed]

J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
[Crossref]

2016 (4)

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a large cloud of cold atoms,” Phys. Rev. Lett. 116, 083601 (2016).
[Crossref] [PubMed]

M. O. Araújo, I. Krešié, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117, 073002 (2016).
[Crossref] [PubMed]

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114, 24004 (2016).
[Crossref]

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

2015 (2)

S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, “Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system,” Phys. Rev. A 91, 023829 (2015).
[Crossref]

M. O. Scully, “Single Photon Subradiance: Quantum control of spontaneous emission and ultrafast readout,” Phys. Rev. Lett. 115, 243602 (2015).
[Crossref] [PubMed]

2013 (3)

I. M. Mirza, S. J. van Enk, and H. J. Kimble, “Single-photon time-dependent spectra in coupled cavity arrays,” J. Opt. Soc. Am. B 30, 2640–2649 (2013).
[Crossref]

M. Bradford and Jung-Tsung Shen, “Spontaneous emission in cavity QED with a terminated waveguide,” Phys. Rev. A 87, 063830 (2013).
[Crossref]

A. González-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

2011 (2)

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

M. R. Jorgensen, Jeremy W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

2010 (1)

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010).
[Crossref] [PubMed]

2008 (1)

G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: Entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008).
[Crossref]

2004 (1)

A. Dantan and M. Pinard, “Quantum-state transfer between fields and atoms in electromagnetically induced transparency,” Phys. Rev. A 69, 043810 (2004).
[Crossref]

2003 (2)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

E. Frishman and M. Shapiro, “Suppression of the spontaneous emission of atoms and molecules,” Phys. Rev. A 68, 032717 (2003).
[Crossref]

2001 (2)

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

E. Frishman and M. Shapiro, “Complete suppression of spontaneous decay of a manifold of states by infrequent interruptions,” Phys. Rev. Lett. 87, 253001 (2001).
[Crossref] [PubMed]

2000 (3)

P. Mataloni, E. De Angelis, and F. De Martini, “Bose-Einstein partition statistics in superradiant spontaneous emission,” Phys. Rev. Lett. 85, 1420–1423 (2000).
[Crossref] [PubMed]

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

X. M. Hu and J. S. Peng, “Quantum interference from spontaneous decay in Lambda systems: realization in the dressed-state picture,” J. Phys. B: At. Mol. Opt. Phys. 33, 921–931 (2000).
[Crossref]

1999 (1)

C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307–1310 (1999).
[Crossref]

1998 (2)

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

P. Zhou and S. Swain, “Dynamics of a driven two-level atom coupled to a frequency-tunable cavity,” Phys. Rev. A 58, 1515–1530 (1998).
[Crossref]

1997 (1)

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[Crossref]

1996 (4)

S. M. Barnett and R. Loudon, “Sum rule for modified spontaneous emission rates,” Phys. Rev. Lett. 77, 2444–2446 (1996).
[Crossref] [PubMed]

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[Crossref] [PubMed]

H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1034 (1996).
[Crossref] [PubMed]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995–3998 (1996).
[Crossref] [PubMed]

1994 (1)

H. Freedhoff and T. Quang, “Ultrasharp lines in the absorption and fluorescence spectra of an atom in a cavity,” Phys. Rev. Lett. 72, 474–477 (1994).
[Crossref] [PubMed]

1993 (2)

W. Lange and H. Walther, “Observation of dynamic suppression of spontaneous emission in a strongly driven cavity,” Phys. Rev. A 48, 4551–4554 (1993).
[Crossref] [PubMed]

H. Freedhoff and T. Quang, “Steady-state resonance fluorescence spectrum of a two-level atom in a cavity,” J. Opt. Soc. Am. B 10, 1337–1346 (1993).
[Crossref]

1992 (3)

D. J. Gauthier, Q. Wu, S. E. Morin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464–467 (1992).
[Crossref] [PubMed]

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[Crossref] [PubMed]

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

1989 (2)

C. M. Savage, “Resonance fluorescence spectrum of an atom strongly coupled to a cavity,” Phys. Rev. Lett. 63, 1376–1379 (1989).
[Crossref] [PubMed]

A. Lezama, Y. Zhu, S. Morin, and T. W. Mossberg, “Cavity-perturbed strong-field resonance fluorescence,” Phys. Rev. A 39, R2754–R2757 (1989).
[Crossref]

1988 (1)

M. D. Reid, “Quantum theory of optical bistability without adiabatic elimination,” Phys. Rev. A 37, 4792–4818 (1988).
[Crossref]

1987 (2)

M. Lewenstein, T. W. Mossberg, and R. J. Glauber, “Dynamical suppression of spontaneous emission,” Phys. Rev. Lett. 59, 775–778 (1987).
[Crossref] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

1983 (2)

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S. Hassan, “Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity,” Phys. Rev. A 27, 3112–3128 (1983).
[Crossref]

1978 (1)

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[Crossref]

1969 (3)

M. Lax and W. H. Louisell, “Quantum noise. XII. Density-operator treatment of field and population fluctuations,” Phys. Rev. 185, 568–591 (1969).
[Crossref]

M. Tavis and F. W. Cummings, “Approximate solutions for an N-molecule-radiation-field hamiltonian,” Phys. Rev. 188, 692–695 (1969).
[Crossref]

B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev. 188, 1969–1975 (1969).
[Crossref]

1968 (1)

M. Tavis and F. W. Cummings, “Exact solution for an N-moleculeradiation-field hamiltonian,” Phys. Rev. 170, 379–384 (1968).
[Crossref]

1964 (1)

H. Haken, “A nonlinear theory of laser noise and coherence. I,” Z. Phys. 181, 96–124 (1964).
[Crossref]

1963 (1)

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II,” Phys. Rev. 129, 481–485 (1963).
[Crossref]

1961 (1)

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

1954 (1)

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[Crossref]

Agarwal, G. S.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[Crossref]

Albrecht, A.

A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).

Araújo, M. O.

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a large cloud of cold atoms,” Phys. Rev. Lett. 116, 083601 (2016).
[Crossref] [PubMed]

M. O. Araújo, I. Krešié, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117, 073002 (2016).
[Crossref] [PubMed]

Arimondo, E.

E. Arimondo, Progress in Optics, Vol. 35, E. Wolf, ed. (Elsevier Science, 1996), pp. 257–354.
[Crossref]

Asenjo-Garcia, A.

A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).

Barberis-Blostein, P.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010).
[Crossref] [PubMed]

Barnett, S. M.

S. M. Barnett and R. Loudon, “Sum rule for modified spontaneous emission rates,” Phys. Rev. Lett. 77, 2444–2446 (1996).
[Crossref] [PubMed]

Barrett, M. D.

S. J. Masson, M. D. Barrett, and S. Parkins, “Cavity QED engineering of spin dynamics and squeezing in a spinor gas,” Phys. Rev. Lett. 119, 213601 (2017).
[Crossref] [PubMed]

Bartl, M. H.

M. R. Jorgensen, Jeremy W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

Bayer, M.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Begzjav, T.

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114, 24004 (2016).
[Crossref]

Bloch, D.

J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
[Crossref]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Bogomolov, V. N.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Bonifacio, R.

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[Crossref]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

Bradford, M.

M. Bradford and Jung-Tsung Shen, “Spontaneous emission in cavity QED with a terminated waveguide,” Phys. Rev. A 87, 063830 (2013).
[Crossref]

Bretheau, L.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Campagne-Ibarcq, P.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Carmichael, H. J.

S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, “Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system,” Phys. Rev. A 91, 023829 (2015).
[Crossref]

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010).
[Crossref] [PubMed]

H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S. Hassan, “Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity,” Phys. Rev. A 27, 3112–3128 (1983).
[Crossref]

H. J. Carmichael, Statistical Methods in Quantum Optics, 2nd ed. (Springer, 2002).

Carvalho, J. C. A.

J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
[Crossref]

Chang, D. E.

A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).

Cheng, G. L.

G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: Entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008).
[Crossref]

Chevrollier, M.

J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
[Crossref]

Childs, J. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

Cohen-Tannoudji, C.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

Cottet, N.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Cummings, F. W.

M. Tavis and F. W. Cummings, “Approximate solutions for an N-molecule-radiation-field hamiltonian,” Phys. Rev. 188, 692–695 (1969).
[Crossref]

M. Tavis and F. W. Cummings, “Exact solution for an N-moleculeradiation-field hamiltonian,” Phys. Rev. 170, 379–384 (1968).
[Crossref]

Dantan, A.

A. Dantan and M. Pinard, “Quantum-state transfer between fields and atoms in electromagnetically induced transparency,” Phys. Rev. A 69, 043810 (2004).
[Crossref]

De Angelis, E.

P. Mataloni, E. De Angelis, and F. De Martini, “Bose-Einstein partition statistics in superradiant spontaneous emission,” Phys. Rev. Lett. 85, 1420–1423 (2000).
[Crossref] [PubMed]

De Martini, F.

P. Mataloni, E. De Angelis, and F. De Martini, “Bose-Einstein partition statistics in superradiant spontaneous emission,” Phys. Rev. Lett. 85, 1420–1423 (2000).
[Crossref] [PubMed]

Dicke, R. H.

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[Crossref]

Drummond, P. D.

H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S. Hassan, “Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity,” Phys. Rev. A 27, 3112–3128 (1983).
[Crossref]

Dupont-Roc, J.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

Feld, M. S.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

Forchel, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Freedhoff, H.

H. Freedhoff and T. Quang, “Ultrasharp lines in the absorption and fluorescence spectra of an atom in a cavity,” Phys. Rev. Lett. 72, 474–477 (1994).
[Crossref] [PubMed]

H. Freedhoff and T. Quang, “Steady-state resonance fluorescence spectrum of a two-level atom in a cavity,” J. Opt. Soc. Am. B 10, 1337–1346 (1993).
[Crossref]

Frishman, E.

E. Frishman and M. Shapiro, “Suppression of the spontaneous emission of atoms and molecules,” Phys. Rev. A 68, 032717 (2003).
[Crossref]

E. Frishman and M. Shapiro, “Complete suppression of spontaneous decay of a manifold of states by infrequent interruptions,” Phys. Rev. Lett. 87, 253001 (2001).
[Crossref] [PubMed]

Galusha, Jeremy W.

M. R. Jorgensen, Jeremy W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

Gaponenko, S. V.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).
[Crossref]

Gauthier, D. J.

D. J. Gauthier, Q. Wu, S. E. Morin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464–467 (1992).
[Crossref] [PubMed]

Glauber, R. J.

M. Lewenstein, T. W. Mossberg, and R. J. Glauber, “Dynamical suppression of spontaneous emission,” Phys. Rev. Lett. 59, 775–778 (1987).
[Crossref] [PubMed]

González-Tudela, A.

A. González-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

Gordon, J. P.

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II,” Phys. Rev. 129, 481–485 (1963).
[Crossref]

Goy, P.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

Gross, M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

Grynberg, G.

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

Guerin, W.

M. O. Araújo, I. Krešié, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117, 073002 (2016).
[Crossref] [PubMed]

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a large cloud of cold atoms,” Phys. Rev. Lett. 116, 083601 (2016).
[Crossref] [PubMed]

Haken, H.

H. Haken, “A nonlinear theory of laser noise and coherence. I,” Z. Phys. 181, 96–124 (1964).
[Crossref]

Haroche, S.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

Hassan, S. S.

H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S. Hassan, “Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity,” Phys. Rev. A 27, 3112–3128 (1983).
[Crossref]

Heinzen, D. J.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

Hu, X. M.

G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: Entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008).
[Crossref]

X. M. Hu and J. S. Peng, “Quantum interference from spontaneous decay in Lambda systems: realization in the dressed-state picture,” J. Phys. B: At. Mol. Opt. Phys. 33, 921–931 (2000).
[Crossref]

Huard, B.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Huisman, S. R.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Jezouin, S.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

John, S.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[Crossref]

Jorgensen, M. R.

M. R. Jorgensen, Jeremy W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

Kaiser, R.

M. O. Araújo, I. Krešié, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117, 073002 (2016).
[Crossref] [PubMed]

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a large cloud of cold atoms,” Phys. Rev. Lett. 116, 083601 (2016).
[Crossref] [PubMed]

Kalosha, I. I.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Keitel, C. H.

C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307–1310 (1999).
[Crossref]

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

Kimble, H. J.

A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).

I. M. Mirza, S. J. van Enk, and H. J. Kimble, “Single-photon time-dependent spectra in coupled cavity arrays,” J. Opt. Soc. Am. B 30, 2640–2649 (2013).
[Crossref]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Krešié, I.

M. O. Araújo, I. Krešié, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117, 073002 (2016).
[Crossref] [PubMed]

Lagendijk, A.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Laliotis, A.

J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
[Crossref]

Lamb, W. E.

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Lange, W.

W. Lange and H. Walther, “Observation of dynamic suppression of spontaneous emission in a strongly driven cavity,” Phys. Rev. A 48, 4551–4554 (1993).
[Crossref] [PubMed]

Larionov, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Lax, M.

M. Lax and W. H. Louisell, “Quantum noise. XII. Density-operator treatment of field and population fluctuations,” Phys. Rev. 185, 568–591 (1969).
[Crossref]

Lazarov, G.

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

Leistikow, M. D.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Lewenstein, M.

M. Lewenstein, T. W. Mossberg, and R. J. Glauber, “Dynamical suppression of spontaneous emission,” Phys. Rev. Lett. 59, 775–778 (1987).
[Crossref] [PubMed]

Lezama, A.

A. Lezama, Y. Zhu, S. Morin, and T. W. Mossberg, “Cavity-perturbed strong-field resonance fluorescence,” Phys. Rev. A 39, R2754–R2757 (1989).
[Crossref]

Li, L.

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

Li, Q.

G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: Entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008).
[Crossref]

Loudon, R.

S. M. Barnett and R. Loudon, “Sum rule for modified spontaneous emission rates,” Phys. Rev. Lett. 77, 2444–2446 (1996).
[Crossref] [PubMed]

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).

Louisell, W. H.

M. Lax and W. H. Louisell, “Quantum noise. XII. Density-operator treatment of field and population fluctuations,” Phys. Rev. 185, 568–591 (1969).
[Crossref]

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II,” Phys. Rev. 129, 481–485 (1963).
[Crossref]

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1990).

Lugiato, L. A.

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[Crossref]

Lyyra, A. M.

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

Mallet, F.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Masson, S. J.

S. J. Masson, M. D. Barrett, and S. Parkins, “Cavity QED engineering of spin dynamics and squeezing in a spinor gas,” Phys. Rev. Lett. 119, 213601 (2017).
[Crossref] [PubMed]

Mataloni, P.

P. Mataloni, E. De Angelis, and F. De Martini, “Bose-Einstein partition statistics in superradiant spontaneous emission,” Phys. Rev. Lett. 85, 1420–1423 (2000).
[Crossref] [PubMed]

McDonald, A.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

McHale, J. L.

J. L. McHale, Molecular Spectroscopy (Prentice-Hall, 1999).

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Meystre, P.

P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer, 2007).

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Mirza, I. M.

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114, 24004 (2016).
[Crossref]

I. M. Mirza, S. J. van Enk, and H. J. Kimble, “Single-photon time-dependent spectra in coupled cavity arrays,” J. Opt. Soc. Am. B 30, 2640–2649 (2013).
[Crossref]

Mollow, B. R.

B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev. 188, 1969–1975 (1969).
[Crossref]

Moreno-Cardoner, M.

A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).

Morin, S.

A. Lezama, Y. Zhu, S. Morin, and T. W. Mossberg, “Cavity-perturbed strong-field resonance fluorescence,” Phys. Rev. A 39, R2754–R2757 (1989).
[Crossref]

Morin, S. E.

D. J. Gauthier, Q. Wu, S. E. Morin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464–467 (1992).
[Crossref] [PubMed]

Mosk, A. P.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Mossberg, T. W.

D. J. Gauthier, Q. Wu, S. E. Morin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464–467 (1992).
[Crossref] [PubMed]

A. Lezama, Y. Zhu, S. Morin, and T. W. Mossberg, “Cavity-perturbed strong-field resonance fluorescence,” Phys. Rev. A 39, R2754–R2757 (1989).
[Crossref]

M. Lewenstein, T. W. Mossberg, and R. J. Glauber, “Dynamical suppression of spontaneous emission,” Phys. Rev. Lett. 59, 775–778 (1987).
[Crossref] [PubMed]

Mu, Y.

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[Crossref] [PubMed]

Narducci, L. M.

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

Noh, C.

S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, “Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system,” Phys. Rev. A 91, 023829 (2015).
[Crossref]

Norris, D. G.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010).
[Crossref] [PubMed]

Ori, M.

J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
[Crossref]

Orozco, L. A.

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010).
[Crossref] [PubMed]

Parkins, A. S.

S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, “Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system,” Phys. Rev. A 91, 023829 (2015).
[Crossref]

Parkins, S.

S. J. Masson, M. D. Barrett, and S. Parkins, “Cavity QED engineering of spin dynamics and squeezing in a spinor gas,” Phys. Rev. Lett. 119, 213601 (2017).
[Crossref] [PubMed]

Peng, J. S.

X. M. Hu and J. S. Peng, “Quantum interference from spontaneous decay in Lambda systems: realization in the dressed-state picture,” J. Phys. B: At. Mol. Opt. Phys. 33, 921–931 (2000).
[Crossref]

Petrov, E. P.

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

Pinard, M.

A. Dantan and M. Pinard, “Quantum-state transfer between fields and atoms in electromagnetically induced transparency,” Phys. Rev. A 69, 043810 (2004).
[Crossref]

Porras, D.

A. González-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

Qi, J.

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

Quang, T.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[Crossref]

H. Freedhoff and T. Quang, “Ultrasharp lines in the absorption and fluorescence spectra of an atom in a cavity,” Phys. Rev. Lett. 72, 474–477 (1994).
[Crossref] [PubMed]

H. Freedhoff and T. Quang, “Steady-state resonance fluorescence spectrum of a two-level atom in a cavity,” J. Opt. Soc. Am. B 10, 1337–1346 (1993).
[Crossref]

Raimond, J. M.

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

Reid, M. D.

M. D. Reid, “Quantum theory of optical bistability without adiabatic elimination,” Phys. Rev. A 37, 4792–4818 (1988).
[Crossref]

Reinecke, T. L.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Rouchon, P.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Sargent, M.

P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer, 2007).

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Sarlette, A.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Savage, C. M.

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[Crossref] [PubMed]

C. M. Savage, “Resonance fluorescence spectrum of an atom strongly coupled to a cavity,” Phys. Rev. Lett. 63, 1376–1379 (1989).
[Crossref] [PubMed]

Scully, M. O.

M. O. Scully, “Single Photon Subradiance: Quantum control of spontaneous emission and ultrafast readout,” Phys. Rev. Lett. 115, 243602 (2015).
[Crossref] [PubMed]

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[Crossref] [PubMed]

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
[Crossref]

Shapiro, M.

E. Frishman and M. Shapiro, “Suppression of the spontaneous emission of atoms and molecules,” Phys. Rev. A 68, 032717 (2003).
[Crossref]

E. Frishman and M. Shapiro, “Complete suppression of spontaneous decay of a manifold of states by infrequent interruptions,” Phys. Rev. Lett. 87, 253001 (2001).
[Crossref] [PubMed]

Shen, Jung-Tsung

M. Bradford and Jung-Tsung Shen, “Spontaneous emission in cavity QED with a terminated waveguide,” Phys. Rev. A 87, 063830 (2013).
[Crossref]

Siegman, A. E.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

Six, P.

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

Swain, S.

P. Zhou and S. Swain, “Dynamics of a driven two-level atom coupled to a frequency-tunable cavity,” Phys. Rev. A 58, 1515–1530 (1998).
[Crossref]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995–3998 (1996).
[Crossref] [PubMed]

Tavis, M.

M. Tavis and F. W. Cummings, “Approximate solutions for an N-molecule-radiation-field hamiltonian,” Phys. Rev. 188, 692–695 (1969).
[Crossref]

M. Tavis and F. W. Cummings, “Exact solution for an N-moleculeradiation-field hamiltonian,” Phys. Rev. 170, 379–384 (1968).
[Crossref]

Thomas, J. E.

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

van Enk, S. J.

Vos, W. L.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Walker, L. R.

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II,” Phys. Rev. 129, 481–485 (1963).
[Crossref]

Walls, D. F.

H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S. Hassan, “Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity,” Phys. Rev. A 27, 3112–3128 (1983).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Walther, H.

W. Lange and H. Walther, “Observation of dynamic suppression of spontaneous emission in a strongly driven cavity,” Phys. Rev. A 48, 4551–4554 (1993).
[Crossref] [PubMed]

Wang, X.

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

Weidner, F.

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

Woldeyohannes, M.

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[Crossref]

Wu, Q.

D. J. Gauthier, Q. Wu, S. E. Morin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464–467 (1992).
[Crossref] [PubMed]

Xia, H. R.

H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1034 (1996).
[Crossref] [PubMed]

Yang, J.

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

Yariv, A.

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

Ye, C. Y.

H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1034 (1996).
[Crossref] [PubMed]

Yeganegi, E.

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

Zeeb, S.

S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, “Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system,” Phys. Rev. A 91, 023829 (2015).
[Crossref]

Zhong, W. X.

G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: Entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008).
[Crossref]

Zhou, P.

P. Zhou and S. Swain, “Dynamics of a driven two-level atom coupled to a frequency-tunable cavity,” Phys. Rev. A 58, 1515–1530 (1998).
[Crossref]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995–3998 (1996).
[Crossref] [PubMed]

Zhu, S. Y.

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[Crossref] [PubMed]

H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1034 (1996).
[Crossref] [PubMed]

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

Zhu, Y.

A. Lezama, Y. Zhu, S. Morin, and T. W. Mossberg, “Cavity-perturbed strong-field resonance fluorescence,” Phys. Rev. A 39, R2754–R2757 (1989).
[Crossref]

Zoller, P.

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).
[Crossref]

Zubairy, M. S.

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
[Crossref]

Europhys. Lett. (1)

I. M. Mirza and T. Begzjav, “Fano-Agarwal couplings and non-rotating wave approximation in single-photon timed Dicke subradiance,” Europhys. Lett. 114, 24004 (2016).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B: At. Mol. Opt. Phys. (1)

X. M. Hu and J. S. Peng, “Quantum interference from spontaneous decay in Lambda systems: realization in the dressed-state picture,” J. Phys. B: At. Mol. Opt. Phys. 33, 921–931 (2000).
[Crossref]

Nature (1)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992).
[Crossref]

Phys. Rev. (7)

B. R. Mollow, “Power spectrum of light scattered by two-level systems,” Phys. Rev. 188, 1969–1975 (1969).
[Crossref]

W. H. Louisell, A. Yariv, and A. E. Siegman, “Quantum fluctuations and noise in parametric processes. I.,” Phys. Rev. 124, 1646–1654 (1961).
[Crossref]

J. P. Gordon, W. H. Louisell, and L. R. Walker, “Quantum fluctuations and noise in parametric processes. II,” Phys. Rev. 129, 481–485 (1963).
[Crossref]

M. Lax and W. H. Louisell, “Quantum noise. XII. Density-operator treatment of field and population fluctuations,” Phys. Rev. 185, 568–591 (1969).
[Crossref]

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
[Crossref]

M. Tavis and F. W. Cummings, “Exact solution for an N-moleculeradiation-field hamiltonian,” Phys. Rev. 170, 379–384 (1968).
[Crossref]

M. Tavis and F. W. Cummings, “Approximate solutions for an N-molecule-radiation-field hamiltonian,” Phys. Rev. 188, 692–695 (1969).
[Crossref]

Phys. Rev. A (13)

R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978).
[Crossref]

H. J. Carmichael, D. F. Walls, P. D. Drummond, and S. S. Hassan, “Quantum theory of optical bistability. III. Atomic fluorescence in a low-Q cavity,” Phys. Rev. A 27, 3112–3128 (1983).
[Crossref]

M. D. Reid, “Quantum theory of optical bistability without adiabatic elimination,” Phys. Rev. A 37, 4792–4818 (1988).
[Crossref]

A. Dantan and M. Pinard, “Quantum-state transfer between fields and atoms in electromagnetically induced transparency,” Phys. Rev. A 69, 043810 (2004).
[Crossref]

P. Zhou and S. Swain, “Dynamics of a driven two-level atom coupled to a frequency-tunable cavity,” Phys. Rev. A 58, 1515–1530 (1998).
[Crossref]

A. Lezama, Y. Zhu, S. Morin, and T. W. Mossberg, “Cavity-perturbed strong-field resonance fluorescence,” Phys. Rev. A 39, R2754–R2757 (1989).
[Crossref]

G. L. Cheng, X. M. Hu, W. X. Zhong, and Q. Li, “Two-channel interaction of squeeze-transformed modes with dressed atoms: Entanglement enhancement in four-wave mixing in three-level systems,” Phys. Rev. A 78, 033811 (2008).
[Crossref]

Y. Mu and C. M. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
[Crossref] [PubMed]

W. Lange and H. Walther, “Observation of dynamic suppression of spontaneous emission in a strongly driven cavity,” Phys. Rev. A 48, 4551–4554 (1993).
[Crossref] [PubMed]

S. Zeeb, C. Noh, A. S. Parkins, and H. J. Carmichael, “Superradiant decay and dipole-dipole interaction of distant atoms in a two-way cascaded cavity QED system,” Phys. Rev. A 91, 023829 (2015).
[Crossref]

M. Bradford and Jung-Tsung Shen, “Spontaneous emission in cavity QED with a terminated waveguide,” Phys. Rev. A 87, 063830 (2013).
[Crossref]

J. C. A. Carvalho, A. Laliotis, M. Chevrollier, M. Ori, and D. Bloch, “Backward-emitted sub-Doppler fluorescence from an optically thick atomic vapor,” Phys. Rev. A 96, 043405 (2017).
[Crossref]

E. Frishman and M. Shapiro, “Suppression of the spontaneous emission of atoms and molecules,” Phys. Rev. A 68, 032717 (2003).
[Crossref]

Phys. Rev. Lett. (26)

D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, “Observation of ground-state quantum beats in atomic spontaneous emission,” Phys. Rev. Lett. 105, 123602 (2010).
[Crossref] [PubMed]

T. Quang, M. Woldeyohannes, S. John, and G. S. Agarwal, “Coherent control of spontaneous emission near a photonic band edge: a single-atom optical memory device,” Phys. Rev. Lett. 79, 5238–5241 (1997).
[Crossref]

E. P. Petrov, V. N. Bogomolov, I. I. Kalosha, and S. V. Gaponenko, “Spontaneous emission of organic molecules embedded in a photonic crystal,” Phys. Rev. Lett. 81, 77–80 (1998).
[Crossref]

M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos, “Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap,” Phys. Rev. Lett. 107, 193903 (2011).
[Crossref] [PubMed]

M. R. Jorgensen, Jeremy W. Galusha, and M. H. Bartl, “Strongly modified spontaneous emission rates in diamond-structured photonic crystals,” Phys. Rev. Lett. 107, 143902 (2011).
[Crossref] [PubMed]

P. Campagne-Ibarcq, S. Jezouin, N. Cottet, P. Six, L. Bretheau, F. Mallet, A. Sarlette, P. Rouchon, and B. Huard, “Using spontaneous emission of a qubit as a resource for feedback control,” Phys. Rev. Lett. 117060502 (2016).
[Crossref] [PubMed]

H. Freedhoff and T. Quang, “Ultrasharp lines in the absorption and fluorescence spectra of an atom in a cavity,” Phys. Rev. Lett. 72, 474–477 (1994).
[Crossref] [PubMed]

P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995–3998 (1996).
[Crossref] [PubMed]

C. H. Keitel, “Narrowing spontaneous emission without intensity reduction,” Phys. Rev. Lett. 83, 1307–1310 (1999).
[Crossref]

A. González-Tudela and D. Porras, “Mesoscopic entanglement induced by spontaneous emission in solid-state quantum optics,” Phys. Rev. Lett. 110, 080502 (2013).
[Crossref] [PubMed]

M. O. Scully, “Single Photon Subradiance: Quantum control of spontaneous emission and ultrafast readout,” Phys. Rev. Lett. 115, 243602 (2015).
[Crossref] [PubMed]

P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[Crossref]

M. Lewenstein, T. W. Mossberg, and R. J. Glauber, “Dynamical suppression of spontaneous emission,” Phys. Rev. Lett. 59, 775–778 (1987).
[Crossref] [PubMed]

D. J. Heinzen, J. J. Childs, J. E. Thomas, and M. S. Feld, “Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator,” Phys. Rev. Lett. 58, 1320 (1987).
[Crossref] [PubMed]

W. Guerin, M. O. Araújo, and R. Kaiser, “Subradiance in a large cloud of cold atoms,” Phys. Rev. Lett. 116, 083601 (2016).
[Crossref] [PubMed]

M. O. Araújo, I. Krešié, R. Kaiser, and W. Guerin, “Superradiance in a large and dilute cloud of cold atoms in the linear-optics regime,” Phys. Rev. Lett. 117, 073002 (2016).
[Crossref] [PubMed]

S. Y. Zhu and M. O. Scully, “Spectral line elimination and spontaneous emission cancellation via quantum interference,” Phys. Rev. Lett. 76, 388–391 (1996).
[Crossref] [PubMed]

H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1034 (1996).
[Crossref] [PubMed]

L. Li, X. Wang, J. Yang, G. Lazarov, J. Qi, and A. M. Lyyra, “Comment on ”Experimental observation of spontaneous emission cancellation”,” Phys. Rev. Lett. 84, 4016 (2000).
[Crossref]

S. M. Barnett and R. Loudon, “Sum rule for modified spontaneous emission rates,” Phys. Rev. Lett. 77, 2444–2446 (1996).
[Crossref] [PubMed]

P. Mataloni, E. De Angelis, and F. De Martini, “Bose-Einstein partition statistics in superradiant spontaneous emission,” Phys. Rev. Lett. 85, 1420–1423 (2000).
[Crossref] [PubMed]

M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, “Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators,” Phys. Rev. Lett. 86, 3168–3171 (2001).
[Crossref] [PubMed]

E. Frishman and M. Shapiro, “Complete suppression of spontaneous decay of a manifold of states by infrequent interruptions,” Phys. Rev. Lett. 87, 253001 (2001).
[Crossref] [PubMed]

S. J. Masson, M. D. Barrett, and S. Parkins, “Cavity QED engineering of spin dynamics and squeezing in a spinor gas,” Phys. Rev. Lett. 119, 213601 (2017).
[Crossref] [PubMed]

D. J. Gauthier, Q. Wu, S. E. Morin, and T. W. Mossberg, “Realization of a continuous-wave, two-photon optical laser,” Phys. Rev. Lett. 68, 464–467 (1992).
[Crossref] [PubMed]

C. M. Savage, “Resonance fluorescence spectrum of an atom strongly coupled to a cavity,” Phys. Rev. Lett. 63, 1376–1379 (1989).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J. Kimble, and D. E. Chang, “Exponential improvement in photon storage fidelities using subradiance and selective radiance in atomic arrays,” Phys. Rev. X 7, 031024 (2017).

Z. Phys. (1)

H. Haken, “A nonlinear theory of laser noise and coherence. I,” Z. Phys. 181, 96–124 (1964).
[Crossref]

Other (13)

J. L. McHale, Molecular Spectroscopy (Prentice-Hall, 1999).

For an overview, see Cavity Quantum Electrodynamics, edited by P. R. Berman, ed. (Academic, 1994).

E. Arimondo, Progress in Optics, Vol. 35, E. Wolf, ed. (Elsevier Science, 1996), pp. 257–354.
[Crossref]

R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2000).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
[Crossref]

P. Meystre and M. Sargent, Elements of Quantum Optics, 4th ed. (Springer, 2007).

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).
[Crossref]

H. J. Carmichael, Statistical Methods in Quantum Optics, 2nd ed. (Springer, 2002).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Elsevier, 2008).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon Interactions (Wiley, 1992).

W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1990).

M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics (Addison-Wesley, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Spontaneous spectrum S(ω) of inverted two-level atoms in a cavity for κ = γ, Λ = 1.2γ, γp = 0.5γ, and C = 2.7225. Note that the vertical axis is in logarithmic coordinate. (b) The smallest decay rate λ1 versus the cooperative parameter C for κ = 0.2γ (solid), γ (dashed), and 5γ (dotted).
Fig. 2
Fig. 2 Fluorescence spectrum S(ω) of dressed two-level atoms in a cavity for κ = γ and C0 = 30. We take Ω̃ = 5γ to fix the sidebands for clear show.
Fig. 3
Fig. 3 Fluorescence spectra from the |1〉 ↔ |3〉 transitions of dressed three-level atoms in (a) V and (b) Λ configurations.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

H = g ( a σ 21 + σ 12 a ) ,
α ˙ = ( κ / 2 ) α i g v + F α ( t ) ,
v ˙ = ( Γ / 2 ) v + i g ( z 2 z 1 ) α + F v ( t ) ,
z ˙ 2 = γ z 2 + Λ z 1 i g ( a v * v a * ) + F z 2 ( t ) ,
λ 1 , 2 = κ + Γ 4 [ 1 1 4 κ Γ ( 1 4 CP ) ( κ + Γ ) 2 ] ,
( d / d t ) δ z 2 = ( γ + Λ ) δ z 2 + F z 2 ( t ) ,
S ( ω ) = η 2 2 ω ¯ 2 + λ 1 2 + η 1 2 ω ¯ 2 + λ 2 2 + 2 η 1 η 2 ( ω ¯ 2 + λ 1 λ 2 ) ( ω ¯ 2 + λ 1 2 ) ( ω ¯ 2 + λ 2 2 ) ,
λ 1 min 4 C κ Γ P 2 κ + Γ γ N Λ ,
d min = 2 λ 1 min and h max ( η 2 λ 1 min ) 2 ,
| 1 ˜ = cos θ | 1 sin θ | 2 , | 2 ˜ = sin θ | 1 + cos θ | 2 ,
H I = g ˜ ( a σ ˜ 21 + σ ˜ 12 a ) ,
S ( ω ) = S 1 ( ω ¯ + Ω ˜ ) sin 4 θ + S 2 ( ω ¯ Ω ˜ ) cos 4 θ + S 3 ( ω ¯ ) sin 2 ( 2 θ ) ,
S 1 ( ω 0 Ω ˜ ) / S 2 ( ω 0 + Ω ˜ ) = tan 4 θ ,
H = H 0 + H I ,
H 0 = l = 1 , 2 [ Δ l σ l l + Ω ( σ l 3 + σ 3 l ) ] , H I = l = 1 , 2 [ Δ c l a l a l + g l ( a l σ l 3 + σ 3 l a l ) ] ,
| + = 1 + sin θ 2 | 1 + 1 sin θ 2 | 2 + cos θ 2 | 3 , | 0 = cos θ 2 | 1 + cos θ 2 | 2 + sin θ | 3 , | = 1 sin θ 2 | 1 + 1 + sin θ 2 | 2 cos θ 2 | 3 ,

Metrics