Abstract

We present wideband and large free spectral range optical filters with steep passband edges for the selection of adjacent WDM communication channels that can be reliably fabricated with mainstream silicon photonics technology. The devices are based on three cascaded stages of coupled resonator optical waveguides loaded on a common bus waveguide. These stages differ in the number of resonators but are implemented with exactly identical unit cells, comprised of a matched racetrack resonator layout and a uniform spacing between cells. The different number of resonators in each stage allows a high rejection in the through port response enabled by the interleaved distribution of zeros. Furthermore, the exact replication of a unique cell avoids the passband ripple and high lobes in the stopband that typically arise in apodized coupled resonator optical waveguide based filters due to fabrication and coupling induced variations in the effective path length of each resonator. Silicon photonics filters designed for the selection of 9 adjacent optical carriers generated by a 100 GHz free spectral range comb laser have been successfully fabricated with 248 nm DUV lithography, achieving an out-of-band rejection above 11 dB and an insertion loss of less than 0.5 dB for the worst channels.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer

Seok-Hwan Jeong, Daisuke Shimura, Takasi Simoyama, Miyoshi Seki, Nobuyuki Yokoyama, Minoru Ohtsuka, Keiji Koshino, Tsuyoshi Horikawa, Yu Tanaka, and Ken Morito
Opt. Express 21(25) 30163-30174 (2013)

Apodized SCISSORs for filtering and switching

Sang-Yeon Cho and Richard Soref
Opt. Express 16(23) 19078-19090 (2008)

The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis

José David Doménech, Pascual Muñoz, and José Capmany
Opt. Express 17(23) 21050-21059 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
    [Crossref] [PubMed]
  2. A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
    [Crossref] [PubMed]
  3. Q. Deng, R. Zhang, L. Liu, X. Li, J. Michel, and Z. Zhou, “Athermal and CMOS-compatible flat-topped silicon Mach-Zehnder filters,” in Proc. 2016 Conf. Group IV Photon. (GFP), 172–173.
    [Crossref]
  4. J. St-Yves, H. Bahrami, P. Jean, S. LaRochelle, and W. Shi, “Widely bandwidth-tunable silicon filter with an unlimited free-spectral range,” Opt. Lett. 40(23), 5471–5474 (2015).
    [Crossref] [PubMed]
  5. D. Pérez-Galacho, C. Alonso-Ramos, F. Mazeas, X. Le Roux, D. Oser, W. Zhang, D. Marris-Morini, L. Labonté, S. Tanzilli, É. Cassan, and L. Vivien, “Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures,” Opt. Lett. 42(8), 1468–1471 (2017).
    [Crossref] [PubMed]
  6. C. Alonso-Ramos, X. Le Roux, D. Benedikovic, V. Vakarin, E. Durán-Valdeiglesias, D. Oser, D. Pérez-Galacho, E. Cassan, D. Marris-Morini, P. Cheben, and L. Vivien, “Bragg grating filter for suspended silicon waveguides,” in Proc. 2017 Conf. Group IV Photon. (GFP), 91–92.
    [Crossref]
  7. J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon Quantum Photonics,” J. Sel. Top. Quantum Electron. 22(6), 6700113 (2016).
    [Crossref]
  8. J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
    [Crossref] [PubMed]
  9. C. Madsen and J. H. Zhao, Optical filter design and analysis: a signal processing approach (J.W. Sons, 1999).
  10. S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
    [Crossref]
  11. M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
    [Crossref] [PubMed]
  12. A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
    [Crossref]
  13. C. L. Manganelli, P. Pintus, F. Gambini, F. Di Pasquale, and C. J. Oton, “Thermal tuning double ring resonator filters: experimental analysis,” in Proc. IEEE Conf. Group IV Photon. (GFP), 12–13.
    [Crossref]
  14. M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
    [Crossref] [PubMed]
  15. A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
    [Crossref]
  16. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
    [Crossref] [PubMed]
  17. P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
    [Crossref] [PubMed]
  18. J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
    [Crossref]
  19. Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
    [Crossref]
  20. S.-H. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21(25), 30163–30174 (2013).
    [Crossref] [PubMed]
  21. C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effects in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962–1965 (1994).
    [Crossref]
  22. J. D. Doménech, P. Muñoz, and J. Capmany, “The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis,” Opt. Express 17(23), 21050–21059 (2009).
    [Crossref] [PubMed]
  23. J. D. Doménech, P. Muñoz, and J. Capmany, “Transmission and group-delay characterization of coupled resonator optical waveguides apodized through the longitudinal offset technique,” Opt. Lett. 36(2), 136–138 (2011).
    [Crossref] [PubMed]
  24. P. Chamorro-Posada and F. J. Fraile-Peláez, “Phase Asymmetry Effect in Longitudinal Offset Coupled Optical Waveguides,” IEEE Photonics Technol. Lett. 26(15), 1489–1491 (2014).
    [Crossref]
  25. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).
  26. S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
    [Crossref] [PubMed]
  27. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
    [Crossref]

2017 (4)

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
[Crossref] [PubMed]

D. Pérez-Galacho, C. Alonso-Ramos, F. Mazeas, X. Le Roux, D. Oser, W. Zhang, D. Marris-Morini, L. Labonté, S. Tanzilli, É. Cassan, and L. Vivien, “Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures,” Opt. Lett. 42(8), 1468–1471 (2017).
[Crossref] [PubMed]

S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
[Crossref] [PubMed]

2016 (1)

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon Quantum Photonics,” J. Sel. Top. Quantum Electron. 22(6), 6700113 (2016).
[Crossref]

2015 (1)

2014 (1)

P. Chamorro-Posada and F. J. Fraile-Peláez, “Phase Asymmetry Effect in Longitudinal Offset Coupled Optical Waveguides,” IEEE Photonics Technol. Lett. 26(15), 1489–1491 (2014).
[Crossref]

2013 (2)

2011 (1)

2010 (5)

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
[Crossref]

P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref] [PubMed]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (1)

2006 (1)

2004 (1)

2002 (1)

1994 (1)

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effects in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962–1965 (1994).
[Crossref]

Adibi, A.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
[Crossref]

Agarwal, A.

Alipour, P.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
[Crossref]

Alonso-Ramos, C.

Asghari, M.

Assefa, S.

Azadeh, S. S.

Badihi, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Baets, R.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[Crossref]

Bahrami, H.

Banwell, T.

Berg, S.

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effects in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962–1965 (1994).
[Crossref]

Blom, H.-O.

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effects in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962–1965 (1994).
[Crossref]

Bogaerts, W.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon Quantum Photonics,” J. Sel. Top. Quantum Electron. 22(6), 6700113 (2016).
[Crossref]

Canciamilla, A.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

Capmany, J.

Cassan, É.

Chamorro-Posada, P.

P. Chamorro-Posada and F. J. Fraile-Peláez, “Phase Asymmetry Effect in Longitudinal Offset Coupled Optical Waveguides,” IEEE Photonics Technol. Lett. 26(15), 1489–1491 (2014).
[Crossref]

Chimot, N.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Cooper, M. L.

De La Rue, R. M.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

Doménech, J. D.

Dong, P.

Dumon, P.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[Crossref]

Feng, D.

Feng, N.-N.

Ferrari, C.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

Fraile-Peláez, F. J.

P. Chamorro-Posada and F. J. Fraile-Peláez, “Phase Asymmetry Effect in Longitudinal Offset Coupled Optical Waveguides,” IEEE Photonics Technol. Lett. 26(15), 1489–1491 (2014).
[Crossref]

Garreau, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Green, W. M.

Gupta, G.

Hauck, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Hedlund, C.

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effects in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962–1965 (1994).
[Crossref]

Horikawa, T.

Huang, Y.

Islamova, E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
[Crossref] [PubMed]

Jaenen, P.

Jean, P.

Jeong, S.-H.

Koshino, K.

Kumar, R.

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Labonté, L.

LaRochelle, S.

Le Roux, X.

Lee, D. C.

Lelarge, F.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Li, C.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Li, Q.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
[Crossref]

Liang, H.

Lo, G. Q.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Luff, B. J.

Manolatou, C.

Marris-Morini, D.

Martinelli, M.

Mazeas, F.

Melloni, A.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

A. Melloni and M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20(2), 296–303 (2002).
[Crossref]

Menendez, R.

Mentovich, E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Merget, F.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
[Crossref] [PubMed]

S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
[Crossref] [PubMed]

Mookherjea, S.

Morichetti, F.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

Morito, K.

Moscoso-Mártir, A.

S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Müller, J.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
[Crossref] [PubMed]

S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
[Crossref] [PubMed]

Muñoz, P.

Nielsen, M.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

O’Brien, J. L.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon Quantum Photonics,” J. Sel. Top. Quantum Electron. 22(6), 6700113 (2016).
[Crossref]

Ohtsuka, M.

Ong, J.

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Oser, D.

Paloczi, G.

Pérez-Galacho, D.

Poon, J.

Popovic, M.

Qian, W.

Rasmussen, D. E.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Rockman, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Romero-García, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
[Crossref] [PubMed]

Rooks, M.

Samarelli, A.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

Sandomirsky, A.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Scheuer, J.

Schneider, M. A.

Sekaric, L.

Seki, M.

Selvaraja, S. K.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[Crossref]

Setter, R.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Sharif Azadeh, S.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

Shen, B.

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
[Crossref] [PubMed]

Shi, W.

Shimura, D.

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon Quantum Photonics,” J. Sel. Top. Quantum Electron. 22(6), 6700113 (2016).
[Crossref]

Simoyama, T.

Soltani, M.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
[Crossref]

Sorel, M.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

St-Yves, J.

Tanaka, Y.

Tanzilli, S.

Thompson, M. G.

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon Quantum Photonics,” J. Sel. Top. Quantum Electron. 22(6), 6700113 (2016).
[Crossref]

Toliver, P.

Torregiani, M.

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

Van Thourhout, D.

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of Photonic Wire and Crystal Circuits in Silicon-on-Insulator Using 193-nm Optical Lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[Crossref]

Vivien, L.

Vlasov, Y.

Vlasov, Y. A.

Watts, M.

Witzens, J.

A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

S. Romero-García, A. Moscoso-Mártir, S. S. Azadeh, J. Müller, B. Shen, F. Merget, and J. Witzens, “High-speed resonantly enhanced silicon photonics modulator with a large operating temperature range,” Opt. Lett. 42(1), 81–84 (2017).
[Crossref] [PubMed]

Woodward, T. K.

Xia, F.

Yariv, A.

Yegnanarayanan, S.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
[Crossref]

Yokoyama, N.

Zhang, W.

IEEE Photonics Technol. Lett. (3)

J. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and Tunable-Bandwidth Filter Using Cascaded High-Order Silicon Microring Filters,” IEEE Photonics Technol. Lett. 25(16), 1543–1546 (2013).
[Crossref]

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects,” IEEE Photonics Technol. Lett. 22(23), 1768–1770 (2010).
[Crossref]

P. Chamorro-Posada and F. J. Fraile-Peláez, “Phase Asymmetry Effect in Longitudinal Offset Coupled Optical Waveguides,” IEEE Photonics Technol. Lett. 26(15), 1489–1491 (2014).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

A. Canciamilla, M. Torregiani, C. Ferrari, F. Morichetti, R. M. De La Rue, A. Samarelli, M. Sorel, and A. Melloni, “Silicon coupled-ring resonator structures for slow light applications: potential, impairements and ultimate limits,” J. Opt. 12(10), 104008 (2010).
[Crossref]

J. Sel. Top. Quantum Electron. (2)

J. W. Silverstone, D. Bonneau, J. L. O’Brien, and M. G. Thompson, “Silicon Quantum Photonics,” J. Sel. Top. Quantum Electron. 22(6), 6700113 (2016).
[Crossref]

S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer Linewidth Uniformity in Silicon Nanophotonics Waveguide Devices Using CMOS Fabrication Technology,” J. Sel. Top. Quantum Electron. 16(1), 316–324 (2010).
[Crossref]

J. Vac. Sci. Technol. A (1)

C. Hedlund, H.-O. Blom, and S. Berg, “Microloading effects in reactive ion etching,” J. Vac. Sci. Technol. A 12(4), 1962–1965 (1994).
[Crossref]

Opt. Express (7)

J. D. Doménech, P. Muñoz, and J. Capmany, “The longitudinal offset technique for apodization of coupled resonator optical waveguide devices: concept and fabrication tolerance analysis,” Opt. Express 17(23), 21050–21059 (2009).
[Crossref] [PubMed]

S.-H. Jeong, D. Shimura, T. Simoyama, M. Seki, N. Yokoyama, M. Ohtsuka, K. Koshino, T. Horikawa, Y. Tanaka, and K. Morito, “Low-loss, flat-topped and spectrally uniform silicon-nanowire-based 5th-order CROW fabricated by ArF-immersion lithography process on a 300-mm SOI wafer,” Opt. Express 21(25), 30163–30174 (2013).
[Crossref] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007).
[Crossref] [PubMed]

P. Dong, N.-N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[Crossref] [PubMed]

M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[Crossref] [PubMed]

J. Poon, J. Scheuer, S. Mookherjea, G. Paloczi, Y. Huang, and A. Yariv, “Matrix analysis of microring coupled-resonator optical waveguides,” Opt. Express 12(1), 90–103 (2004).
[Crossref] [PubMed]

M. L. Cooper, G. Gupta, M. A. Schneider, W. M. Green, S. Assefa, F. Xia, Y. A. Vlasov, and S. Mookherjea, “Statistics of light transport in 235-ring silicon coupled-resonator optical waveguides,” Opt. Express 18(25), 26505–26516 (2010).
[Crossref] [PubMed]

Opt. Lett. (4)

Sci. Rep. (2)

A. Moscoso-Mártir, J. Müller, J. Hauck, N. Chimot, R. Setter, A. Badihi, D. E. Rasmussen, A. Garreau, M. Nielsen, E. Islamova, S. Romero-García, B. Shen, A. Sandomirsky, S. Rockman, C. Li, S. Sharif Azadeh, G. Q. Lo, E. Mentovich, F. Merget, F. Lelarge, and J. Witzens, “Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 13857 (2017).
[Crossref] [PubMed]

A. Moscoso-Mártir, J. Müller, E. Islamova, F. Merget, and J. Witzens, “Calibrated Link Budget of a Silicon Photonics WDM Transceiver with SOA and Semiconductor Mode-Locked Laser,” Sci. Rep. 7(1), 12004 (2017).
[Crossref] [PubMed]

Other (5)

Q. Deng, R. Zhang, L. Liu, X. Li, J. Michel, and Z. Zhou, “Athermal and CMOS-compatible flat-topped silicon Mach-Zehnder filters,” in Proc. 2016 Conf. Group IV Photon. (GFP), 172–173.
[Crossref]

C. Alonso-Ramos, X. Le Roux, D. Benedikovic, V. Vakarin, E. Durán-Valdeiglesias, D. Oser, D. Pérez-Galacho, E. Cassan, D. Marris-Morini, P. Cheben, and L. Vivien, “Bragg grating filter for suspended silicon waveguides,” in Proc. 2017 Conf. Group IV Photon. (GFP), 91–92.
[Crossref]

C. Madsen and J. H. Zhao, Optical filter design and analysis: a signal processing approach (J.W. Sons, 1999).

C. L. Manganelli, P. Pintus, F. Gambini, F. Di Pasquale, and C. J. Oton, “Thermal tuning double ring resonator filters: experimental analysis,” in Proc. IEEE Conf. Group IV Photon. (GFP), 12–13.
[Crossref]

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic representation of a Coupled Resonator Optical Waveguide (CROW) with coupling apodization. (b) Highest required coupling strength (corresponding to κ1 = κN+1, the coupling between the bus waveguide and the first resonator as well as the last resonator and the drop waveguide), as a function of the ratio between the width of the passband (BWP) and the Free Spectral Range (FSR) for the implementation of a 5th order apodized CROW filter. BWP is shown both for a CROW filter in drop port configuration (lower x-axis) and a CROW filter in through port configuration (upper x-axis). The red, green and blue curves refer to Chebyshev responses with passband ripple levels of respectively 0.1 dB, 0.5 dB and 1 dB (-16.4 dB, -9.6 dB and -6.86 dB side lobe levels in through port configuration). The black curve corresponds to a Butterworth filter response with a maximally flat drop port passband response. (c) Spectral response over a whole FSR of the Chebyshev filters in drop (solid lines) or through (dashed lines) configurations with a ratio BWP/FSR of 0.3.
Fig. 2
Fig. 2 (a) Simulated coupling strength as a function of the gap for a resonator with 3 µm radius and a linear coupling length LS of 9.7 µm. The required gaps for the implementation of a 7th order CROW filter are marked with green circles. (b) Variation in the measured resonance wavelength for the fabricated test structures consisting of identical single racetrack resonator layouts coupled to bus and drop waveguides with different gaps. (c) Expected spectral response for the 7th order CROW filter in the drop port (top) and through port (bottom) considering the systematic resonance wavelength shifts obtained experimentally for the corresponding gap values. The ideal, designed filter responses without resonance misalignments are also plotted for comparison with dash-dotted lines.
Fig. 3
Fig. 3 (a) Schematic layout of the proposed multi-stage CROW filter with 3 stages and orders N = 3, 4 and 5. All individual resonators have identical racetrack layouts and gaps. (b) Through port spectral responses of the three individual stages (solid lines) for a design with N = 3 (green), 4 (red) and 5 (blue) and a coupling strength of κ2 = 0.7. The interleaved distribution of the zeros leads to a combined through port response with flat passband (BWP/FSR = 0.4) and high rejection in the stopband (SSL of -18.3 dB).
Fig. 4
Fig. 4 (a) Combined response of a three stage CROW filter with N = 3, 4, 5 and different values of coupling strengths, κ2. (b) Combined response of three stage CROW filters with a coupling strength of κ2 = 0.9 but different orders on each stage. (c) Variation of the insertion loss at the central wavelength of the passband and ratio of the passband width (BWP) to the FSR as a function of the coupling strength in multi-stage CROW filters with different number of resonators on each stage. (d) Maximum SSL as a function of the coupling strength. The performance metrics for the selected design target are highlighted with black points.
Fig. 5
Fig. 5 Microscope images of the fabricated structures: (a) passive CROW filter and (b) CROW filter with three thermal phase shifters for independent tuning of the three stages.
Fig. 6
Fig. 6 Measurement results of the three individual stages of the filter and combined response (a) before tuning and (b) after tuning with thermal phase shifters.
Fig. 7
Fig. 7 Normalized spectrum of a typical comb laser used as a multi-carrier light source for WDM communications in [1,2] before (red dashed line) and after transmission through the proposed three stage CROW filter (blue solid line). The filter response in also plotted with a black solid line.

Tables (2)

Tables Icon

Table 1 Measurement results for the passive filter structures

Tables Icon

Table 2 Measurement results for filter structures with thermal phase shifters

Metrics