Abstract

We present a secure communication system constructed using pairs of nonlinear photonic physical unclonable functions (PUFs) that harness physical chaos in integrated silicon micro-cavities. Compared to a large, electronically stored one-time pad, our method provisions large amounts of information within the intrinsically complex nanostructure of the micro-cavities. By probing a micro-cavity with a rapid sequence of spectrally-encoded ultrafast optical pulses and measuring the lightwave responses, we experimentally demonstrate the ability to extract 2.4 Gb of key material from a single micro-cavity device. Subsequently, in a secure communication experiment with pairs of devices, we achieve bit error rates below 10−5 at code rates of up to 0.1. The PUFs’ responses are never transmitted over the channel or stored in digital memory, thus enhancing the security of the system. Additionally, the micro-cavity PUFs are extremely small, inexpensive, robust, and fully compatible with telecommunications infrastructure, components, and electronic fabrication. This approach can serve one-time pad or public key exchange applications where high security is required.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic physical unclonable function

Brian C. Grubel, Bryan T. Bosworth, Michael R. Kossey, Hongcheng Sun, A. Brinton Cooper, Mark A. Foster, and Amy C. Foster
Opt. Express 25(11) 12710-12721 (2017)

Four–photon interferometry for secure quantum key distribution

P. Hariharan and Barry C. Sanders
Opt. Express 10(21) 1222-1226 (2002)

Chaotic on–off keying for secure communications

A. Uchida, S. Yoshimori, M. Shinozuka, T. Ogawa, and F. Kannari
Opt. Lett. 26(12) 866-868 (2001)

References

  • View by:
  • |
  • |
  • |

  1. W. Mao, Modern Cryptography, Theory and Practice (Hewlett-Packard Books, 2004).
  2. C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
    [Crossref]
  3. R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
    [Crossref] [PubMed]
  4. R. Pappu, “Physical One-Way Functions,” Massachusetts Institute of Technology (2001).
  5. R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science 297(5589), 2026–2030 (2002).
    [Crossref] [PubMed]
  6. R. Horstmeyer, S. Assawaworrarit, U. Ruhrmair, and C. Yang, “Physically secure and fully reconfigurable data storage using optical scattering,” Proc. 2015 IEEE Int. Symp. Hardware-Oriented Secur. Trust. HOST 2015 157–162 (2015).
    [Crossref]
  7. H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” Proc. 3rd Int. Conf. Trust Trust. Comput. 290–297 (2010).
    [Crossref]
  8. B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities,” Conf. Lasers Electro-Optics, 2016, CLEO 2016(2), 2–3 (2016).
  9. B. C. Grubel, B. T. Bosworth, M. R. Kossey, H. Sun, A. B. Cooper, M. A. Foster, and A. C. Foster, “Silicon photonic physical unclonable function,” Opt. Express 25(11), 12710–12721 (2017).
    [Crossref] [PubMed]
  10. B. C. Grubel, D. S. Vresilovic, B. T. Bosworth, M. R. Kossey, A. C. Foster, M. A. Foster, and A. B. Cooper, “Light transport through ultrafast chaotic micro-cavities for photonic physical unclonable functions,” in 2017 51st Annual Conference on Information Sciences and Systems (CISS) (IEEE, 2017), pp. 1–6.
  11. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: From near-infrared to mid-infrared,” Nanophotonics 3(4-5), 247–268 (2014).
    [Crossref]
  12. M. Fox, Optical Properties of Solids, Second (Oxford University, 2010).
  13. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography (Chemical Rubber Company, 1997).
  14. A. W. Appel and B. Schneier, Verification of a Cryptographic Primitive : SHA-256 (2014), Vol. 37.
  15. A. Russell and H. Wang, “How to fool an unbounded adversary with a short key,” IEEE Trans. Inf. Theory 52(3), 1130–1140 (2006).
    [Crossref]
  16. Y. Dodis, “Entropic security and the encryption of high entropy messages,” Theory Cryptogr. 1–22 (2005).
    [Crossref]
  17. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput. 38(1), 97–139 (2008).
    [Crossref]
  18. B. T. Bosworth, J. R. Stroud, D. N. Tran, T. D. Tran, S. Chin, and M. A. Foster, “High-speed flow microscopy using compressed sensing with ultrafast laser pulses,” Opt. Express 23(8), 10521–10532 (2015).
    [Crossref] [PubMed]
  19. L. Kocarev and S. Lian, Chaos-Based Cryptography: Theory, Algorithms and Applications (Springer, 2011).
  20. F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The Context-Tree Weighting Method: Basic Properties,” 41, (1995).
    [Crossref]
  21. T. Ignatenko, G.-J. Schrijen, B. Škorić, P. Tuyls, and F. M. J. Willems, “Estimating the Secrecy Rate of Physical Uncloneable Functions with the Context-Tree Weighting Method,” IEEE Int. Symp. Inf. Theory 499–503 (2006).
  22. S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
    [Crossref]
  23. R. E. Fontana, G. M. Decad, and S. R. Hetzler, “The impact of areal density and millions of square inches (MSI) of produced memory on petabyte shipments of TAPE, NAND flash, and HDD storage class memories,” IEEE Symp. Mass Storage Syst. Technol. (2013).
    [Crossref]
  24. D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).
  25. H. Kang, Y. Hori, T. Katashita, and M. Hagiwara, “The Implementation of Fuzzy Extractor is Not Hard to Do : An Approach Using PUF Data Ext,” 30th Symp. Cryptogr. Inf. Secur. 1–7 (2013).
  26. M. D. Yu and S. Devadas, “Secure and robust error correction for physical unclonable functions,” IEEE Des. Test Comput. 27(1), 48–65 (2010).
    [Crossref]
  27. F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of Step-Reduced SHA-256,” ArXiv 126–143 (2006).
    [Crossref]
  28. H. Gilbert and H. Handschuh, “Security analysis of SHA-256 and sisters,” Sel. Areas Cryptogr. 175–193 (2004).
    [Crossref]
  29. H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura, “Cryptographic key generation from PUF data using efficient fuzzy extractors,” Int. Conf. Adv. Commun. Technol. ICACT 23–26 (2014).

2017 (1)

2016 (1)

B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities,” Conf. Lasers Electro-Optics, 2016, CLEO 2016(2), 2–3 (2016).

2015 (1)

2014 (2)

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: From near-infrared to mid-infrared,” Nanophotonics 3(4-5), 247–268 (2014).
[Crossref]

2013 (1)

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

2010 (1)

M. D. Yu and S. Devadas, “Secure and robust error correction for physical unclonable functions,” IEEE Des. Test Comput. 27(1), 48–65 (2010).
[Crossref]

2008 (1)

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput. 38(1), 97–139 (2008).
[Crossref]

2006 (1)

A. Russell and H. Wang, “How to fool an unbounded adversary with a short key,” IEEE Trans. Inf. Theory 52(3), 1130–1140 (2006).
[Crossref]

2002 (1)

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

1949 (1)

C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Agarwal, A. M.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: From near-infrared to mid-infrared,” Nanophotonics 3(4-5), 247–268 (2014).
[Crossref]

Assawaworrarit, S.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Beigné, E.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Bosworth, B. T.

Chin, S.

Cooper, A. B.

B. C. Grubel, B. T. Bosworth, M. R. Kossey, H. Sun, A. B. Cooper, M. A. Foster, and A. C. Foster, “Silicon photonic physical unclonable function,” Opt. Express 25(11), 12710–12721 (2017).
[Crossref] [PubMed]

B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities,” Conf. Lasers Electro-Optics, 2016, CLEO 2016(2), 2–3 (2016).

Daly, D. C.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Devadas, S.

M. D. Yu and S. Devadas, “Secure and robust error correction for physical unclonable functions,” IEEE Des. Test Comput. 27(1), 48–65 (2010).
[Crossref]

Dodis, Y.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput. 38(1), 97–139 (2008).
[Crossref]

Foster, A. C.

B. C. Grubel, B. T. Bosworth, M. R. Kossey, H. Sun, A. B. Cooper, M. A. Foster, and A. C. Foster, “Silicon photonic physical unclonable function,” Opt. Express 25(11), 12710–12721 (2017).
[Crossref] [PubMed]

B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities,” Conf. Lasers Electro-Optics, 2016, CLEO 2016(2), 2–3 (2016).

Foster, M. A.

Fujino, L. C.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Gershenfeld, N.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Grubel, B. C.

B. C. Grubel, B. T. Bosworth, M. R. Kossey, H. Sun, A. B. Cooper, M. A. Foster, and A. C. Foster, “Silicon photonic physical unclonable function,” Opt. Express 25(11), 12710–12721 (2017).
[Crossref] [PubMed]

B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities,” Conf. Lasers Electro-Optics, 2016, CLEO 2016(2), 2–3 (2016).

Guo, C.

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Horstmeyer, R.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Ikeda, M.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Judkewitz, B.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Kimerling, L. C.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: From near-infrared to mid-infrared,” Nanophotonics 3(4-5), 247–268 (2014).
[Crossref]

Kossey, M.

B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities,” Conf. Lasers Electro-Optics, 2016, CLEO 2016(2), 2–3 (2016).

Kossey, M. R.

Liu, S.

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Mahony, F. O.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Mendel, F.

F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of Step-Reduced SHA-256,” ArXiv 126–143 (2006).
[Crossref]

Michel, J.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: From near-infrared to mid-infrared,” Nanophotonics 3(4-5), 247–268 (2014).
[Crossref]

Moon, U.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Ostrovsky, R.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput. 38(1), 97–139 (2008).
[Crossref]

Pappu, R.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Pärssinen, A.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Pramstaller, N.

F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of Step-Reduced SHA-256,” ArXiv 126–143 (2006).
[Crossref]

Rechberger, C.

F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of Step-Reduced SHA-256,” ArXiv 126–143 (2006).
[Crossref]

Recht, B.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Reyzin, L.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput. 38(1), 97–139 (2008).
[Crossref]

Rijmen, V.

F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of Step-Reduced SHA-256,” ArXiv 126–143 (2006).
[Crossref]

Russell, A.

A. Russell and H. Wang, “How to fool an unbounded adversary with a short key,” IEEE Trans. Inf. Theory 52(3), 1130–1140 (2006).
[Crossref]

Shannon, C. E.

C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Sheridan, J. T.

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Shtarkov, Y. M.

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The Context-Tree Weighting Method: Basic Properties,” 41, (1995).
[Crossref]

Smith, A.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput. 38(1), 97–139 (2008).
[Crossref]

Smith, K. C.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Stoppa, D.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Stroud, J. R.

Sun, H.

Taylor, J.

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

Thomsen, A.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Tjalkens, T. J.

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The Context-Tree Weighting Method: Basic Properties,” 41, (1995).
[Crossref]

Tran, D. N.

Tran, T. D.

Vellekoop, I. M.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Wambacq, P.

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

Wang, H.

A. Russell and H. Wang, “How to fool an unbounded adversary with a short key,” IEEE Trans. Inf. Theory 52(3), 1130–1140 (2006).
[Crossref]

Willems, F. M. J.

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The Context-Tree Weighting Method: Basic Properties,” 41, (1995).
[Crossref]

Yang, C.

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Yu, M. D.

M. D. Yu and S. Devadas, “Secure and robust error correction for physical unclonable functions,” IEEE Des. Test Comput. 27(1), 48–65 (2010).
[Crossref]

Zhang, L.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: From near-infrared to mid-infrared,” Nanophotonics 3(4-5), 247–268 (2014).
[Crossref]

Bell Syst. Tech. J. (1)

C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell Syst. Tech. J. 28(4), 656–715 (1949).
[Crossref]

Conf. Lasers Electro-Optics, 2016, CLEO (1)

B. C. Grubel, B. T. Bosworth, M. Kossey, A. B. Cooper, M. A. Foster, and A. C. Foster, “Secure Authentication using the Ultrafast Response of Chaotic Silicon Photonic Microcavities,” Conf. Lasers Electro-Optics, 2016, CLEO 2016(2), 2–3 (2016).

IEEE Des. Test Comput. (1)

M. D. Yu and S. Devadas, “Secure and robust error correction for physical unclonable functions,” IEEE Des. Test Comput. 27(1), 48–65 (2010).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. Russell and H. Wang, “How to fool an unbounded adversary with a short key,” IEEE Trans. Inf. Theory 52(3), 1130–1140 (2006).
[Crossref]

Nanophotonics (1)

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: From near-infrared to mid-infrared,” Nanophotonics 3(4-5), 247–268 (2014).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

S. Liu, C. Guo, and J. T. Sheridan, “A review of optical image encryption techniques,” Opt. Laser Technol. 57, 327–342 (2014).
[Crossref]

Sci. Rep. (1)

R. Horstmeyer, B. Judkewitz, I. M. Vellekoop, S. Assawaworrarit, and C. Yang, “Physical key-protected one-time pad,” Sci. Rep. 3(1), 3543 (2013).
[Crossref] [PubMed]

Science (1)

R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science 297(5589), 2026–2030 (2002).
[Crossref] [PubMed]

SIAM J. Comput. (1)

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data,” SIAM J. Comput. 38(1), 97–139 (2008).
[Crossref]

Other (18)

W. Mao, Modern Cryptography, Theory and Practice (Hewlett-Packard Books, 2004).

R. E. Fontana, G. M. Decad, and S. R. Hetzler, “The impact of areal density and millions of square inches (MSI) of produced memory on petabyte shipments of TAPE, NAND flash, and HDD storage class memories,” IEEE Symp. Mass Storage Syst. Technol. (2013).
[Crossref]

D. C. Daly, L. C. Fujino, K. C. Smith, D. Stoppa, A. Pärssinen, P. Wambacq, A. Thomsen, E. Beigné, M. Ikeda, U. Moon, and F. O. Mahony, “Through the Looking Glass — The 2017 Edition,” (2017).

H. Kang, Y. Hori, T. Katashita, and M. Hagiwara, “The Implementation of Fuzzy Extractor is Not Hard to Do : An Approach Using PUF Data Ext,” 30th Symp. Cryptogr. Inf. Secur. 1–7 (2013).

F. Mendel, N. Pramstaller, C. Rechberger, and V. Rijmen, “Analysis of Step-Reduced SHA-256,” ArXiv 126–143 (2006).
[Crossref]

H. Gilbert and H. Handschuh, “Security analysis of SHA-256 and sisters,” Sel. Areas Cryptogr. 175–193 (2004).
[Crossref]

H. Kang, Y. Hori, T. Katashita, M. Hagiwara, and K. Iwamura, “Cryptographic key generation from PUF data using efficient fuzzy extractors,” Int. Conf. Adv. Commun. Technol. ICACT 23–26 (2014).

R. Horstmeyer, S. Assawaworrarit, U. Ruhrmair, and C. Yang, “Physically secure and fully reconfigurable data storage using optical scattering,” Proc. 2015 IEEE Int. Symp. Hardware-Oriented Secur. Trust. HOST 2015 157–162 (2015).
[Crossref]

H. Busch, M. Sotáková, S. Katzenbeisser, and R. Sion, “The PUF promise,” Proc. 3rd Int. Conf. Trust Trust. Comput. 290–297 (2010).
[Crossref]

R. Pappu, “Physical One-Way Functions,” Massachusetts Institute of Technology (2001).

M. Fox, Optical Properties of Solids, Second (Oxford University, 2010).

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography (Chemical Rubber Company, 1997).

A. W. Appel and B. Schneier, Verification of a Cryptographic Primitive : SHA-256 (2014), Vol. 37.

L. Kocarev and S. Lian, Chaos-Based Cryptography: Theory, Algorithms and Applications (Springer, 2011).

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens, “The Context-Tree Weighting Method: Basic Properties,” 41, (1995).
[Crossref]

T. Ignatenko, G.-J. Schrijen, B. Škorić, P. Tuyls, and F. M. J. Willems, “Estimating the Secrecy Rate of Physical Uncloneable Functions with the Context-Tree Weighting Method,” IEEE Int. Symp. Inf. Theory 499–503 (2006).

B. C. Grubel, D. S. Vresilovic, B. T. Bosworth, M. R. Kossey, A. C. Foster, M. A. Foster, and A. B. Cooper, “Light transport through ultrafast chaotic micro-cavities for photonic physical unclonable functions,” in 2017 51st Annual Conference on Information Sciences and Systems (CISS) (IEEE, 2017), pp. 1–6.

Y. Dodis, “Entropic security and the encryption of high entropy messages,” Theory Cryptogr. 1–22 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Operation of the photonic PUF. (a) A spectro-temporally encoded ultrafast optical pulse sequence is sent into the photonic PUF. The response sequence generated by the cavity is passed through a programmable spectral filter and is then detected. A series of digital signal processing steps are performed before sending the binary response to a fuzzy extractor to generate a binary key. Scanning electron microscope (SEM) images of the six prototype designs are shown. (b) Larger SEM image of an example prototype device. (c) A finite difference time domain (FDTD) image detailing the excitation of many transient optical modes within the cavity after ultrafast excitation.
Fig. 2
Fig. 2 Silicon photonic PUF experimental setup. A 90 MHz mode-locked laser (MLL) generated ultrashort pulses, i.e. < 300 fs full-width half max (FWHM). These are amplified via an erbium doped fiber amplifier (EDFA) and sent through dispersion compensating fiber (DCF) to spread the pulse to about 11 ns. The pulses are sent through a polarization controller (PC) and then through a Mach Zehnder modulator (MZM) to encode a pseudo-random binary sequence onto each pulse in real time. This is performed by taking the synchronized monitor port of the MLL and first detecting each pulse with a photo-diode (PD). The signal is passed through a low pass filter and then used as a clock signal for the pulse pattern generator (PPG) which is connected to the MZM. The spectrally-modulated pulses are sent through anomalous DCF to compress them back to < 3ps. The pulse train is sent through another PC, EDFA, and a programmable spectral filter or WaveShaper (WS) (for additional dispersion compensation) prior to insertion into a tapered fiber at the chip edge aligned to a tapered waveguide (TWG) for fiber-to-waveguide coupling. The pulses excite many modes within the cavity and each optical response is collected via a focusing lens and collimator (COL) to couple back into a single mode fiber (SMF). A polarizer (POL) is used on the output to select a polarization state under test. The output pulses are amplified for detection by an EDFA and sent through a WS to pass each pulse through a 296-feature spectral pattern over the spectral bandwidth of each pulse. The pulses are detected using a PD and read via an oscilloscope for further post-processing to convert into the final binary key material.
Fig. 3
Fig. 3 PUF output evaluation. (a) Effective number of bits (ENOB) for each detection channel formed from a set of order-32 Hadamard orthogonal spectral patterns applied to 20 × 106 PUF responses prior to detection. (b) Mean entropy rate across all channels at different resampling levels in post-processing. (c) Probability density function (PDF) of the detected signal across all channels and responses for a resampling to 10 bits in post-processing. (d) Mean error by bit location (big endian) in terms of fractional Hamming distance (FHD) between binary responses generated from successive repetitions of the same challenge to the system. (e) Compression rate of processed binary responses via the CTW algorithm for 24 blocks of 100 Mbits samples of key material. The observed mean compression rate (1.0061) indicates the incompressibility of the PUF responses prior to fuzzy extraction.
Fig. 4
Fig. 4 (a) Encrypted communication protocol. Two endpoints, A and B, have unique photonic PUFs. A fuzzy extractor is applied to the response sequence derived from PUF A to recover a specific block of key material with the help from data in a public dictionary. A message is encrypted via digital exclusive-or (XOR) with that key and is sent through a public channel. Endpoint B recovers their unique key in the same manner as A. The key from A is recovered by B via digital XOR with a previously constructed shared key. This recovered key from A is used to recover the message from the ciphertext via digital XOR. (b) Generation procedure. A challenge p interrogates the PUF resulting in a binary response w, which is sent into the secure sketch (SS) and extractor. The SS takes w and a random value r to generate helper data s. The extractor ingests w and a random value x to produce key R. Both s and x are stored in a public dictionary as helper data. (c) Reconstruction procedure. Challenge p interrogates the PUF which produces w′ which may be different than w given noise. The reconstructor takes helper data s and response w′ to reconstruct w which the extractor uses, with helper data x, to reproduce key R.
Fig. 5
Fig. 5 Fuzzy Extraction Dictionary Setup and Communications Protocol. (a) Dictionary Setup. (b) Communications Protocol.
Fig. 6
Fig. 6 Normalized FHD binomial distributions and histograms for binary responses from same, different, and cloned designs, resampling to 3 bits post-analog-to-digital conversion (ADC) at a block size of 256 bits. All responses were generated from the quasi-Transverse Electric (TE) polarization state.
Fig. 7
Fig. 7 The mean experimental and predicted BER are shown for 57 combinations of different devices communicating a test image of 25,575 bits at various BCH code rates. The upper and lower bars indicate a two standard deviation bound relative to the mean BER. Lower bounds for low code rates are not shown due to perfect message reconstruction. The inset images show the recovered message (university seal) at various code rates. The mean experimental BER vs code rate for an adversary attempting to decrypt a message using the intended endpoint’s clone are shown for the same 57 combinations, demonstrating unclonability. The lowest observed clone BER is 0.483.

Metrics