Abstract

Recently, effective surface plasmon polaritons (ESPPs) induced by structural dispersion in bounded waveguides were theoretically demonstrated and experimentally verified. Despite the theoretical and experimental efforts, whether ESPPs can mimic real SPPs in every aspect still remains an open question. In this work, we go one step further to study the hybridization of ESPPs in multilayer systems. We consider transverse electric (TE) modes in a conventional rectangular waveguide and a parallel-plate waveguide (PPW) and derive analytically the dispersion relations and asymptotic frequencies of the corresponding ESPPs modes in sandwiched structures consisting of alternating dielectrics of different permittivities. Our results show that the ESPPs can be categorized into odd and even parities (owing to the ‘plasmon’ hybridization) in a similar way as natural SPPs supported by the insulator/metal/insulator (IMI) and metal/insulator/metal (MIM) heterostructures in the optical regime. The similarities and differences between ESSPs and their optical counterparts are also discussed in details, which may provide valuable guidance for future application of ESPPs at the microwave and terahertz frequencies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magneto-optic surface plasmon polariton modulator based on refractive index variations

M. Khatir and N. Granpayeh
Appl. Opt. 53(12) 2539-2547 (2014)

Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration

Yusheng Bian, Zheng Zheng, Xin Zhao, Jinsong Zhu, and Tao Zhou
Opt. Express 17(23) 21320-21325 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  4. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  6. M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
    [Crossref] [PubMed]
  7. P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  8. W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Lett. 9(1), 485–490 (2009).
    [Crossref] [PubMed]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  10. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  11. A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
    [Crossref] [PubMed]
  12. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [Crossref] [PubMed]
  13. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
    [Crossref]
  14. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
    [Crossref] [PubMed]
  15. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
    [Crossref]
  16. X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [Crossref]
  17. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  18. Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
    [Crossref]
  19. Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
    [Crossref]
  20. Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
    [Crossref]
  21. T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
    [Crossref]
  22. X. Zhang, L. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys. 105(1), 013704 (2009).
    [Crossref]
  23. Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
    [Crossref] [PubMed]
  24. Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
    [Crossref]
  25. S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
    [Crossref]
  26. P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
    [Crossref]
  27. B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
    [Crossref] [PubMed]
  28. S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
    [Crossref]
  29. L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
    [Crossref] [PubMed]
  30. L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
    [Crossref]
  31. F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
    [Crossref] [PubMed]
  32. Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
    [Crossref] [PubMed]
  33. Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
    [Crossref] [PubMed]
  34. F. Gao, Z. Gao, Y. Luo, and B. L. Zhang, “Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
    [Crossref]
  35. Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
    [Crossref]
  36. J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
    [Crossref]
  37. L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
    [Crossref]
  38. P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
    [Crossref]
  39. C. D. Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
    [Crossref]
  40. Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
    [Crossref]
  41. F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
    [Crossref]
  42. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2017 (5)

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

2016 (6)

C. D. Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

F. Gao, Z. Gao, Y. Luo, and B. L. Zhang, “Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

2015 (6)

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
[Crossref] [PubMed]

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

2014 (3)

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

2013 (2)

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

2012 (3)

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
[Crossref]

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

2011 (2)

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[Crossref]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

2009 (3)

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

X. Zhang, L. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys. 105(1), 013704 (2009).
[Crossref]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

2005 (4)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Berry, S. J.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Camargo, P. H. C.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Campbell, T.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

Chen, C.

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Chen, H.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Chen, H. S.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Chen, X.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

Chen, X. L.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Chong, Y.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Costa, J. R.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Cuerda, J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Cui, T.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Cui, T. J.

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Engheta, N.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

C. D. Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fernandes, C. A.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Fernández-Domínguez, A. I.

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Gao, F.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

F. Gao, Z. Gao, Y. Luo, and B. L. Zhang, “Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Gao, X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Gao, Z.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

F. Gao, Z. Gao, Y. Luo, and B. L. Zhang, “Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
[Crossref]

Garcia-Vidal, F. J.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Giovampaola, C. D.

C. D. Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

Gu, C.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Gu, C. Q.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hao, R.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Hecht, B.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hess, W.

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Hibbins, A. P.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Hooper, I. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Huidobro, P. A.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Jiang, Q.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[Crossref]

Jiang, T.

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Jiang, W. X.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Joannopoulos, J. D.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Kato, J.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

Kawata, S.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

Kee, C.

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kim, J.

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kim, K.

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Kim, S.

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, E. P.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Li, L.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Li, W.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Li, Z.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Liao, Z.

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Lin, X.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Liu, L.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Liu, L. L.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Liu, Y.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Lu, L.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Lu, X.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Luo, Y.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

F. Gao, Z. Gao, Y. Luo, and B. L. Zhang, “Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Ma, H. F.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Maier, S. A.

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Martin, O. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Martin-Moreno, L.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Moreno, E.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Musa, M. Y.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Ning, P.

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Ning, P. P.

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Niu, Z.

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Oh, S.

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Ozaki, M.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pan, B. C.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Park, H.

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Pendry, J. B.

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Pors, A.

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Prudêncio, F. R.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Qin, P. F.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Qing, Q.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

Ran, L.

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

X. Zhang, L. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys. 105(1), 013704 (2009).
[Crossref]

Sambles, J. R.

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shen, L.

Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
[Crossref]

X. Zhang, L. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys. 105(1), 013704 (2009).
[Crossref]

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Shen, X.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Shen, X. P.

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Shi, J. H.

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

Shi, X.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Shum, P.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Silveirinha, M. G.

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Soljacic, M.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, H.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Sun, H. Y.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Sun, Y. H.

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wang, Z. J.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wu, J. J.

Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
[Crossref]

Xia, Y.

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Xiao, Q. X.

Xu, B.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Xu, B. Z.

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Xu, H.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Xu, J.

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

Yan, J.

Yang, B. J.

Yang, T. J.

Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
[Crossref]

Yang, Y. H.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Yang, Z.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Yin, W. Y.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Zhang, B.

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Zhang, B. L.

F. Gao, Z. Gao, Y. Luo, and B. L. Zhang, “Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Zhang, J. J.

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

Zhang, X.

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

X. Zhang, L. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys. 105(1), 013704 (2009).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, J.

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, Y.

L. Liu, Z. Li, C. Gu, B. Xu, P. Ning, C. Chen, J. Yan, Z. Niu, and Y. Zhao, “Smooth bridge between guided waves and spoof surface plasmon polaritons,” Opt. Lett. 40(8), 1810–1813 (2015).
[Crossref] [PubMed]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

Zheng, B.

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Zheng, X.

Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
[Crossref]

Zhou, Y.

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Zhou, Y. J.

B. J. Yang, Y. J. Zhou, and Q. X. Xiao, “Spoof localized surface plasmons in corrugated ring structures excited by microstrip line,” Opt. Express 23(16), 21434–21442 (2015).
[Crossref] [PubMed]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[Crossref]

ACS Photonics (2)

Z. Liao, X. Shen, B. C. Pan, J. Zhao, Y. Luo, and T. J. Cui, “Combined system for efficient excitation and capture of LSP resonances and flexible control of SPP transmissions,” ACS Photonics 2(6), 738–743 (2015).
[Crossref]

Z. Liao, A. I. Fernández-Domínguez, J. J. Zhang, S. A. Maier, T. J. Cui, and Y. Luo, “Homogeneous metamaterial description of localized spoof plasmons in spiral geometries,” ACS Photonics 3(10), 1768–1775 (2016).
[Crossref]

Adv. Funct. Mater. (1)

F. Gao, Z. Gao, Y. Luo, and B. L. Zhang, “Invisibility Dips of Near-Field Energy Transport in a Spoof Plasmonic Metadimer,” Adv. Funct. Mater. 26(45), 8307–8312 (2016).
[Crossref]

Adv. Sci. (1)

P. F. Qin, Y. H. Yang, M. Y. Musa, B. Zheng, Z. J. Wang, R. Hao, W. Y. Yin, H. S. Chen, and E. P. Li, “Toroidal Localized Spoof Plasmons on Compact Metadisks,” Adv. Sci. 4, 1700487 (2017).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (7)

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[Crossref]

X. Gao, J. H. Shi, X. Shen, H. F. Ma, W. X. Jiang, L. Li, and T. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Z. Li, L. Liu, C. Gu, P. Ning, B. Xu, Z. Niu, and Y. Zhao, “Multi-band localized spoof plasmons with texturing closed surfaces,” Appl. Phys. Lett. 104(10), 101603 (2014).
[Crossref]

Z. Li, B. Xu, C. Gu, P. Ning, L. Liu, Z. Niu, and Y. Zhao, “Localized spoof plasmons in closed textured cavities,” Appl. Phys. Lett. 104(25), 251601 (2014).
[Crossref]

L. L. Liu, Z. Li, B. Z. Xu, P. P. Ning, C. Chen, J. Xu, X. L. Chen, and C. Q. Gu, “Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes,” Appl. Phys. Lett. 107(20), 201602 (2015).
[Crossref]

S. J. Berry, T. Campbell, A. P. Hibbins, and J. R. Sambles, “Surface wave resonances supported on a square array of square metallic pillars,” Appl. Phys. Lett. 100(10), 101107 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

L. Liu, Z. Li, B. Xu, C. Gu, X. Chen, H. Sun, Y. Zhou, Q. Qing, P. Shum, and Y. Luo, “Ultra Low Loss High-Contrast Gratings based Spoof Surface Plasmonic Waveguide,” IEEE Trans. Microw. Theory Tech. 65(6), 2008–2018 (2017).
[Crossref]

J. Appl. Phys. (1)

X. Zhang, L. Shen, and L. Ran, “Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments,” J. Appl. Phys. 105(1), 013704 (2009).
[Crossref]

J. Opt. A (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A 7(2), S97–S101 (2005).
[Crossref]

Laser Photonics Rev. (1)

J. J. Zhang, Z. Liao, Y. Luo, X. P. Shen, S. A. Maier, and T. J. Cui, “Spoof Plasmon Hybridization,” Laser Photonics Rev. 11(1), 1600191 (2017).
[Crossref]

Nano Lett. (1)

W. Li, P. H. C. Camargo, X. Lu, and Y. Xia, “Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering,” Nano Lett. 9(1), 485–490 (2009).
[Crossref] [PubMed]

Nat. Commun. (1)

F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, and B. Zhang, “Probing topological protection using a designer surface plasmon structure,” Nat. Commun. 7, 11619 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

F. R. Prudêncio, J. R. Costa, C. A. Fernandes, N. Engheta, and M. G. Silveirinha, “Experimental verification of ‘waveguide’ plasmonics,” New J. Phys. 19(12), 123017 (2017).
[Crossref]

Opt. Commun. (1)

Z. Gao, L. Shen, J. J. Wu, T. J. Yang, and X. Zheng, “Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars,” Opt. Commun. 285(8), 2076–2080 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

Z. Li, L. L. Liu, H. Y. Sun, Y. H. Sun, C. Q. Gu, X. L. Chen, Y. Liu, and Y. Luo, “Effective surface plasmon polaritons induced by modal dispersion in a waveguide,” Phys. Rev. Appl. 7(4), 044028 (2017).
[Crossref]

Phys. Rev. B (2)

C. D. Giovampaola and N. Engheta, “Plasmonics without negative dielectrics,” Phys. Rev. B 93(19), 195152 (2016).
[Crossref]

S. Kim, S. Oh, K. Kim, J. Kim, H. Park, W. Hess, and C. Kee, “Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons,” Phys. Rev. B 91(3), 035116 (2015).
[Crossref]

Phys. Rev. Lett. (2)

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

A. Pors, E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, “Localized spoof plasmons arise while texturing closed surfaces,” Phys. Rev. Lett. 108(22), 223905 (2012).
[Crossref] [PubMed]

Phys. Rev. X (1)

P. A. Huidobro, X. P. Shen, J. Cuerda, E. Moreno, L. Martin-Moreno, F. J. Garcia-Vidal, T. J. Cui, and J. B. Pendry, “Magnetic localized surface plasmons,” Phys. Rev. X 4(2), 021003 (2014).
[Crossref]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Prog. Electromagn. Res. M (1)

T. Jiang, L. Shen, X. Zhang, and L. Ran, “High-order modes of spoof surface plasmon polaritons on periodically corrugated metal surfaces,” Prog. Electromagn. Res. M 8, 91–102 (2009).
[Crossref]

Sci. Rep. (3)

Z. Liao, Y. Luo, A. I. Fernández-Domínguez, X. Shen, S. A. Maier, and T. J. Cui, “High-order localized spoof surface plasmon resonances and experimental verifications,” Sci. Rep. 5(1), 9590 (2015).
[Crossref] [PubMed]

Z. Li, L. Liu, B. Xu, P. Ning, C. Chen, J. Xu, X. Chen, C. Gu, and Q. Qing, “High-Contrast Gratings based Spoof Surface Plasmons,” Sci. Rep. 6(1), 21199 (2016).
[Crossref] [PubMed]

Z. Li, B. Xu, L. Liu, J. Xu, C. Chen, C. Gu, and Y. Zhou, “Localized Spoof Surface Plasmons based on Closed Subwavelength High Contrast Gratings: Concept and Microwave-Regime Realizations,” Sci. Rep. 6(1), 27158 (2016).
[Crossref] [PubMed]

Science (6)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science 332(6026), 218–220 (2011).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Effective SPPs in multilayer systems in a conventional rectangular waveguide filled with three-layered isotropic and homogeneous dielectrics with relative permittivities ε r1 , ε r2 and ε r3 and relative permeabilities μ r1 = μ r2 = μ r3 =1. Two interfaces (denoted as the two solid blue lines) are supposed to support coupled ESPPs modes transmitted along the z direction.
Fig. 2
Fig. 2 Dispersion relations of odd and even ESPPs modes in the effective IMI structure in a parallel-plate waveguide.
Fig. 3
Fig. 3 Dispersion relations of odd and even ESPPs modes in the effective MIM structure in a parallel-plate waveguide.
Fig. 4
Fig. 4 Dispersion relations of the fundamental odd ESPPs mode of an effective MIM structure for an dielectric core of size 10.16mm with different dielectric loss in the parallel-plate waveguide.
Fig. 5
Fig. 5 Dispersion relations of odd and even ESPPs modes in the effective IMI structure in a rectangular waveguide.
Fig. 6
Fig. 6 Dispersion relations of odd and even ESPPs modes in the effective MIM structure in a rectangular waveguide.
Fig. 7
Fig. 7 Simulation of the odd ESPPs mode in effective IMI structure in a standard X-band rectangular waveguide, in which l 3 =6a and l 1 = l 2 = l 4 = l 5 =a (a) Structure of the interface (b) Distributions of electric lines of force on the yz plane (c) Distributions of Ey on the yz plane (d) Distributions of Ey on the xz plane (e) Odd ESPPs mode spectrum.
Fig. 8
Fig. 8 Simulation of the odd ESPPs mode in effective MIM structure in a standard X-band rectangular waveguide, in which l 3 =6a and l 1 = l 2 = l 4 = l 5 =a (a) Structure of the interface (b) Distributions of electric force of lines on the yz plane (c) Distributions of Ey on the yz plane (d) Distributions of Ey on the xz plane (e) Odd ESPPs mode spectrum.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H x 3 = jβ μ 0 e jβz ( B 3 e k 3y y + C 3 e k 3y y ) E y 3 =j 1 ω μ 0 ε 0 ε e3 ( k 3 2 + k 3y 2 ) e jβz ( B 3 e k 3y y + C 3 e k 3y y ) E z 3 = β k 3y ω μ 0 ε 0 ε e3 e jβz ( B 3 e k 3y y + C 3 e k 3y y )
H x i = jβ μ 0 e jβz ( B i e k iy y + C i e k iy y ) E y i =j 1 ω μ 0 ε 0 ε ei ( k i 2 + k iy 2 ) e jβz ( B i e k iy y + C i e k iy y ) E z i = β k iy ω μ 0 ε 0 ε ei e jβz ( B i e k iy y C i e k iy y ),i=1,2
y=s, H x III = H x I ; H z III = H z I ; E z III = E z I y=s, H x II = H x I ; H z II = H z I ; E z II = E z I y=b/2, E z III =0;y=b/2, E z II =0 y=s, ε e3 E y III = ε e1 E y I ;y=s, ε e2 E y II = ε e1 E y I
e 4 k 1y s = ( k 1y ε e1 + k 2y ε e2 tanh( k 2y t ) ) ( k 1y ε e1 k 2y ε e2 tanh( k 2y t ) ) ( k 1y ε e1 + k 3y ε e3 tanh( k 3y t ) ) ( k 1y ε e1 k 3y ε e3 tanh( k 3y t ) )
tanh( k 1y s )= k 2y ε e1 k 1y ε e2 tanh( k 2y t ),
tanh( k 1y s )= k 1y ε e2 k 2y ε e1 coth( k 2y t ).
tanh( k 1y s )= k 2y ε e1 k 1y ε e2 ,
tanh( k 1y s )= k 1y ε e2 k 2y ε e1 ,

Metrics