Abstract

A straightforward technique for fabricating low-cost microlens arrays with controllable focal length is developed. By harnessing and manipulating the interfacial energy between the liquid-state acrylate resin and the solidified polydimethylsiloxane (PDMS), the surface of the acrylate resin in the PDMS microhole presents a spherical shape and the curvature can be flexibly controlled. With the change of the processing time for the surface modification of the PDMS microholes, the focal length of the concave microlenses varies from –296.3 μm to –67.4 μm. The numerical aperture of 0.45 is realized. The focal length and the aperture of the microlenses are also affected by the diameter of the microholes. The fabricated concave microlens array can be employed as a master to further duplicate convex microlens array. A good image quality can be achieved by using the convex microlens arrays.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Arrays of microlenses with variable focal lengths fabricated by restructuring polymer surfaces with an ink-jet device

Ramon Pericet-Camara, Andreas Best, Sebastian K. Nett, Jochen S. Gutmann, and Elmar Bonaccurso
Opt. Express 15(15) 9877-9882 (2007)

Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces

Bian Hao, Hewei Liu, Feng Chen, Qing Yang, Pubo Qu, Guangqing Du, Jinhai Si, Xianhua Wang, and Xun Hou
Opt. Express 20(12) 12939-12948 (2012)

Ultralong focal length microlens array fabricated based on SU-8 photoresist

Rui Bian, Ying Xiong, Xiangyu Chen, Penghui Xiong, Shuangyue Hou, Shan Chen, Xiaobo Zhang, Gang Liu, and Yangchao Tian
Appl. Opt. 54(16) 5088-5093 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [Crossref] [PubMed]
  2. M. Cho and M. Danshpanah, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2010).
  3. F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
    [Crossref] [PubMed]
  4. E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
    [Crossref] [PubMed]
  5. E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
    [Crossref]
  6. F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15(10), 6218–6231 (2007).
    [Crossref] [PubMed]
  7. L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive shack–hartmann sensor,” Opt. Commun. 216(4–6), 313–319 (2003).
    [Crossref]
  8. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, “Shack Hartmann wave-front measurement with a large F-number plastic microlens array,” Appl. Opt. 35(1), 188–192 (1996).
    [Crossref] [PubMed]
  9. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [Crossref] [PubMed]
  10. H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
    [Crossref] [PubMed]
  11. E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
    [Crossref]
  12. M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
    [Crossref]
  13. M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
    [Crossref]
  14. C. P. Lin, H. Yang, and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromech. Microeng. 13(5), 748–757 (2003).
    [Crossref]
  15. Y. Lu and S. C. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92(4), 041109 (2008).
    [Crossref]
  16. K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
    [Crossref]
  17. S. I. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12(25), 6366–6371 (2004).
    [Crossref] [PubMed]
  18. B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
    [Crossref] [PubMed]
  19. Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
    [Crossref]
  20. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
    [Crossref]
  21. J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
    [Crossref] [PubMed]
  22. S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
    [Crossref] [PubMed]
  23. C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
    [Crossref] [PubMed]
  24. S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2016).
    [Crossref]
  25. C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
    [Crossref] [PubMed]
  26. J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
    [Crossref]
  27. Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
    [Crossref]
  28. W. L. Wader, R. J. Mammone, and M. Binder, “Surface properties of commercial polymer films following various gas plasma treatments,” J. Appl. Polym. Sci. 43(9), 1589–1591 (1991).
    [Crossref]
  29. D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
    [Crossref] [PubMed]
  30. X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
    [Crossref] [PubMed]
  31. X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
    [PubMed]
  32. X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
    [Crossref] [PubMed]
  33. X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
    [Crossref]
  34. A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
    [Crossref] [PubMed]
  35. P. C. Chen, Y. P. Chang, R. H. Zhang, C. C. Wu, and G. R. Tang, “Microfabricated microfluidic platforms for creating microlens array,” Opt. Express 25(14), 16101–16115 (2017).
    [Crossref] [PubMed]
  36. C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
    [Crossref] [PubMed]
  37. B. C. Prorok, F. Barthelat, C. S. Korach, K. J. Grande-Allen, E. Lipke, G. Lykofatitits, and P. Zavattieri, Mechanics of Biological Systems and Materials, Vol. 5 (Mechanics, 2011).
  38. H. T. Kim and O. C. Jeong, “PDMS surface modification using atmospheric pressure plasma,” Microelectron. Eng. 88(8), 2281–2285 (2011).
    [Crossref]
  39. V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
    [Crossref] [PubMed]
  40. R. Tadmor, “Line energy, line tension and drop size,” Surf. Sci. 602(14), L108–L111 (2008).
    [Crossref]
  41. J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
    [Crossref]
  42. J. Drelich and J. D. Miller, “The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship,” J. Colloid Interface Sci. 164(1), 252–259 (1994).
    [Crossref]
  43. A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, “Line tension measurements through drop size dependence of contact angle,” J. Colloid Interface Sci. 205(1), 1–11 (1998).
    [Crossref] [PubMed]
  44. P. G. de Gennes, and F. B. W. D. Quere, Capillarity and Wetting Phenomena (Classical Continuum Physics, 2004).

2017 (3)

E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
[Crossref]

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

P. C. Chen, Y. P. Chang, R. H. Zhang, C. C. Wu, and G. R. Tang, “Microfabricated microfluidic platforms for creating microlens array,” Opt. Express 25(14), 16101–16115 (2017).
[Crossref] [PubMed]

2016 (4)

C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
[Crossref] [PubMed]

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2016).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

2015 (4)

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

2014 (2)

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref] [PubMed]

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

2013 (3)

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

2012 (2)

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref] [PubMed]

2011 (3)

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

H. T. Kim and O. C. Jeong, “PDMS surface modification using atmospheric pressure plasma,” Microelectron. Eng. 88(8), 2281–2285 (2011).
[Crossref]

2010 (1)

M. Cho and M. Danshpanah, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2010).

2009 (2)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
[Crossref] [PubMed]

2008 (2)

R. Tadmor, “Line energy, line tension and drop size,” Surf. Sci. 602(14), L108–L111 (2008).
[Crossref]

Y. Lu and S. C. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92(4), 041109 (2008).
[Crossref]

2007 (2)

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15(10), 6218–6231 (2007).
[Crossref] [PubMed]

2006 (3)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

2004 (1)

2003 (2)

C. P. Lin, H. Yang, and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromech. Microeng. 13(5), 748–757 (2003).
[Crossref]

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive shack–hartmann sensor,” Opt. Commun. 216(4–6), 313–319 (2003).
[Crossref]

2002 (1)

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

2001 (1)

1998 (1)

A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, “Line tension measurements through drop size dependence of contact angle,” J. Colloid Interface Sci. 205(1), 1–11 (1998).
[Crossref] [PubMed]

1996 (1)

1994 (2)

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

J. Drelich and J. D. Miller, “The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship,” J. Colloid Interface Sci. 164(1), 252–259 (1994).
[Crossref]

1991 (1)

W. L. Wader, R. J. Mammone, and M. Binder, “Surface properties of commercial polymer films following various gas plasma treatments,” J. Appl. Polym. Sci. 43(9), 1589–1591 (1991).
[Crossref]

1988 (1)

Ajdari, A.

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

Amirfazli, A.

A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, “Line tension measurements through drop size dependence of contact angle,” J. Colloid Interface Sci. 205(1), 1–11 (1998).
[Crossref] [PubMed]

Arefi-Khonsari, F.

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

Arimoto, H.

Asplund, M. C.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Barbier, V.

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

Bian, H.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Binder, M.

W. L. Wader, R. J. Mammone, and M. Binder, “Surface properties of commercial polymer films following various gas plasma treatments,” J. Appl. Polym. Sci. 43(9), 1589–1591 (1991).
[Crossref]

Boiko, D. L.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Brauer, N. B.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Bräuer, A.

Brugger, J.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Chai, Y. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chang, S. I.

Chang, Y. P.

Chao, C. K.

C. P. Lin, H. Yang, and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromech. Microeng. 13(5), 748–757 (2003).
[Crossref]

Charbon, E.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Chen, F.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref] [PubMed]

Chen, P. C.

Chen, S. C.

Y. Lu and S. C. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92(4), 041109 (2008).
[Crossref]

Chen, S. J.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Chen, X. L.

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Cho, M.

M. Cho and M. Danshpanah, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2010).

Chokshi, T. V.

Chronis, N.

Connell, G. A.

Dai, B.

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
[Crossref] [PubMed]

Dai, Y.

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Dannberg, P.

Danshpanah, M.

M. Cho and M. Danshpanah, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2010).

Deng, Z.

Deng, Z. F.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

Diaspro, A.

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2016).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Ding, Y.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

Ding, Y. C.

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Drelich, J.

J. Drelich and J. D. Miller, “The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship,” J. Colloid Interface Sci. 164(1), 252–259 (1994).
[Crossref]

Du, G.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref] [PubMed]

Du, G. Q.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

Duocastella, M.

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2016).
[Crossref]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Esashi, M.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Fakhfouri, V.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Fang, C.

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
[Crossref] [PubMed]

Florian, C.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Fujishiro, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Fukai, J.

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

Gale, B. K.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Gao, X.

Garliauskas, M.

E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Gates, R. J.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Gaydos, J.

A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, “Line tension measurements through drop size dependence of contact angle,” J. Colloid Interface Sci. 205(1), 1–11 (1998).
[Crossref] [PubMed]

Gedvilas, M.

E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
[Crossref]

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Grutzner, G.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Hao, B.

Hao, X. Q.

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Hou, X.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref] [PubMed]

Ishizuka, H.

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

Javidi, B.

Jeong, K. H.

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

Jeong, O. C.

H. T. Kim and O. C. Jeong, “PDMS surface modification using atmospheric pressure plasma,” Microelectron. Eng. 88(8), 2281–2285 (2011).
[Crossref]

Jiang, C.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

Jiang, L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Jitsuno, T.

Jung, H.

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

Kaneda, M.

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

Kim, H. T.

H. T. Kim and O. C. Jeong, “PDMS surface modification using atmospheric pressure plasma,” Microelectron. Eng. 88(8), 2281–2285 (2011).
[Crossref]

Kim, J. Y.

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Kwok, D. Y.

A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, “Line tension measurements through drop size dependence of contact angle,” J. Colloid Interface Sci. 205(1), 1–11 (1998).
[Crossref] [PubMed]

Li, H.

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

Li, X.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

Li, X. M.

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Liesener, J.

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive shack–hartmann sensor,” Opt. Commun. 216(4–6), 313–319 (2003).
[Crossref]

Lin, C. H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Lin, C. P.

C. P. Lin, H. Yang, and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromech. Microeng. 13(5), 748–757 (2003).
[Crossref]

Linford, M. R.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Liu, H.

Lu, B. G.

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Lu, Y.

Y. Lu and S. C. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92(4), 041109 (2008).
[Crossref]

Luo, Y.

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Mammone, R. J.

W. L. Wader, R. J. Mammone, and M. Binder, “Surface properties of commercial polymer films following various gas plasma treatments,” J. Appl. Polym. Sci. 43(9), 1589–1591 (1991).
[Crossref]

Miller, J. D.

J. Drelich and J. D. Miller, “The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship,” J. Colloid Interface Sci. 164(1), 252–259 (1994).
[Crossref]

Morita, M.

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

Nakai, S.

Nakatsuka, M.

Natarajan, S.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Neumann, A. W.

A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, “Line tension measurements through drop size dependence of contact angle,” J. Colloid Interface Sci. 205(1), 1–11 (1998).
[Crossref] [PubMed]

Ou, Y.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

Park, C.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Piazza, S.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Popovic, Z. D.

Qu, P.

Raciukaitis, G.

E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
[Crossref]

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Sakai, Y.

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

Schuetz, H.

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Seifert, L.

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive shack–hartmann sensor,” Opt. Commun. 216(4–6), 313–319 (2003).
[Crossref]

Serra, P.

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

Shao, J.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

Shao, J. Y.

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Sheng, B.

Shic, J. F.

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Si, J.

Sinzinger, S.

Smentkowski, V. S.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Sprague, R. A.

Stankevicius, E.

E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
[Crossref]

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

Surdo, S.

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2016).
[Crossref]

Tabeling, P.

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

Tadmor, R.

R. Tadmor, “Line energy, line tension and drop size,” Surf. Sci. 602(14), L108–L111 (2008).
[Crossref]

Takahara, A.

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

Tanaka, S.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Tang, G. R.

Tarasenko, N.

E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
[Crossref]

Tatoulian, M.

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

Tian, H.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

X. Li, Y. Ding, J. Shao, H. Liu, and H. Tian, “Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes,” Opt. Lett. 36(20), 4083–4085 (2011).
[Crossref] [PubMed]

Tian, H. M.

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Tiziani, H. J.

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive shack–hartmann sensor,” Opt. Commun. 216(4–6), 313–319 (2003).
[Crossref]

Tong, S.

Totsu, K.

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Tripathi, A.

Tsai, H. L.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Wader, W. L.

W. L. Wader, R. J. Mammone, and M. Binder, “Surface properties of commercial polymer films following various gas plasma treatments,” J. Appl. Polym. Sci. 43(9), 1589–1591 (1991).
[Crossref]

Wang, C.

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

Wang, D. D.

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Wang, J. H.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

Wang, K.

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

Wang, L.

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Wang, X.

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref] [PubMed]

Watt, R. K.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Wei, H. F.

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

Wei, Y.

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Wen, J.

Whitesides, G. M.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Wippermann, F.

Wu, C. C.

Wu, M. H.

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

Xiao, H.

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Xu, Q.

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

Yang, H.

C. P. Lin, H. Yang, and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromech. Microeng. 13(5), 748–757 (2003).
[Crossref]

Yang, Q.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref] [PubMed]

Yong, J.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Yong, J. L.

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

Yoon, G. Y.

Yoon, J. B.

Yuan, X.

Yun, F.

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Zeitner, U. D.

Zhang, D.

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

C. Fang, B. Dai, R. Zhuo, X. Yuan, X. Gao, J. Wen, B. Sheng, and D. Zhang, “Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens,” Opt. Lett. 41(2), 404–407 (2016).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

Zhang, R. H.

Zhuang, S.

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

Zhuo, R.

ACS Appl. Mater. Interfaces (6)

H. Jung and K. H. Jeong, “Monolithic polymer microlens arrays with high numerical aperture and high packing density,” ACS Appl. Mater. Interfaces 7(4), 2160–2165 (2015).
[Crossref] [PubMed]

C. Jiang, X. Li, H. Tian, C. Wang, J. Shao, Y. Ding, and L. Wang, “Lateral flow through a parallel gap driven by surface hydrophilicity and liquid edge pinning for creating microlens array,” ACS Appl. Mater. Interfaces 6(21), 18450–18456 (2014).
[Crossref] [PubMed]

C. Florian, S. Piazza, A. Diaspro, P. Serra, and M. Duocastella, “Direct laser printing of tailored polymeric microlenses,” ACS Appl. Mater. Interfaces 8(27), 17028–17032 (2016).
[Crossref] [PubMed]

D. Zhang, Q. Xu, C. Fang, K. Wang, X. Wang, S. Zhuang, and B. Dai, “Fabrication of a microlens array with controlled curvature by thermally curving photosensitive gel film beneath microholes,” ACS Appl. Mater. Interfaces 9(19), 16604–16609 (2017).
[Crossref] [PubMed]

J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” ACS Appl. Mater. Interfaces 5(19), 9382–9385 (2013).
[Crossref] [PubMed]

X. Li, H. Tian, Y. Ding, J. Shao, and Y. Wei, “Electrically templated dewetting of a UV-Curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature,” ACS Appl. Mater. Interfaces 5(20), 9975–9982 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. M. Li, H. M. Tian, J. Y. Shao, Y. C. Ding, X. L. Chen, L. Wang, and B. G. Lu, “Decreasing the saturated contact angle in electrowettingon-dielectrics by controlling the charge trapping at liquid–solid interfaces,” Adv. Funct. Mater. 26(18), 2994–3002 (2016).
[Crossref]

Adv. Mater. (1)

X. Li, Y. Ding, J. Shao, H. Tian, and H. Liu, “Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes,” Adv. Mater. 24(23), OP165 (2012).
[PubMed]

Ann. Phys. (Berlin) (1)

E. Stankevicius, M. Garliauskas, M. Gedvilas, N. Tarasenko, and G. Raciukaitis, “Structuring of surfaces with gold nanoparticles by using Bessel-Like beams,” Ann. Phys. (Berlin) 529(12), 170–174 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

E. Stankevicius, M. Gedvilas, and G. Raciukaitis, “Investigation of laser-induced polymerization using a smoothly varying intensity distribution,” Appl. Phys. B 119(3), 525–532 (2015).
[Crossref]

Appl. Phys. Lett. (1)

Y. Lu and S. C. Chen, “Direct write of microlens array using digital projection photopolymerization,” Appl. Phys. Lett. 92(4), 041109 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “Fabrication of microlens arrays in photosensitive glass by femtosecond laser direct writing,” Appl. Phys., A Mater. Sci. Process. 97(4), 751–757 (2009).
[Crossref]

Appl. Surf. Sci. (2)

S. Surdo, A. Diaspro, and M. Duocastella, “Microlens fabrication by replica molding of frozen laser-printed droplets,” Appl. Surf. Sci. 418, 554–558 (2016).
[Crossref]

Y. Luo, L. Wang, Y. C. Ding, H. F. Wei, X. Q. Hao, D. D. Wang, Y. Dai, and J. F. Shic, “Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface,” Appl. Surf. Sci. 279, 36–40 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Ou, Q. Yang, F. Chen, Z. F. Deng, G. Q. Du, J. H. Wang, H. Bian, J. L. Yong, and X. Hou, “Direct fabrication of microlens arrays on PMMA with laser-induced structural modification,” IEEE Photonics Technol. Lett. 27(21), 2253–2256 (2015).
[Crossref]

Int. J. Heat Mass Transfer (1)

J. Fukai, H. Ishizuka, Y. Sakai, M. Kaneda, M. Morita, and A. Takahara, “Effects of droplet size and solute concentration on drying process of polymer solution droplets deposited on homogeneous surfaces,” Int. J. Heat Mass Transfer 49(19–20), 3561–3567 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

F. Zhang, R. J. Gates, V. S. Smentkowski, S. Natarajan, B. K. Gale, R. K. Watt, M. C. Asplund, and M. R. Linford, “Direct adsorption and detection of proteins, including ferritin, onto microlens array patterned bioarrays,” J. Am. Chem. Soc. 129(30), 9252–9253 (2007).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (1)

W. L. Wader, R. J. Mammone, and M. Binder, “Surface properties of commercial polymer films following various gas plasma treatments,” J. Appl. Polym. Sci. 43(9), 1589–1591 (1991).
[Crossref]

J. Colloid Interface Sci. (2)

J. Drelich and J. D. Miller, “The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship,” J. Colloid Interface Sci. 164(1), 252–259 (1994).
[Crossref]

A. Amirfazli, D. Y. Kwok, J. Gaydos, and A. W. Neumann, “Line tension measurements through drop size dependence of contact angle,” J. Colloid Interface Sci. 205(1), 1–11 (1998).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

C. P. Lin, H. Yang, and C. K. Chao, “A new microlens array fabrication method using UV proximity printing,” J. Micromech. Microeng. 13(5), 748–757 (2003).
[Crossref]

Langmuir (2)

M. H. Wu, C. Park, and G. M. Whitesides, “Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography,” Langmuir 18(24), 9312–9318 (2002).
[Crossref]

V. Barbier, M. Tatoulian, H. Li, F. Arefi-Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: application to the formation of double emulsions in microfluidic systems,” Langmuir 22(12), 5230–5232 (2006).
[Crossref] [PubMed]

Microelectron. Eng. (1)

H. T. Kim and O. C. Jeong, “PDMS surface modification using atmospheric pressure plasma,” Microelectron. Eng. 88(8), 2281–2285 (2011).
[Crossref]

Opt. Commun. (1)

L. Seifert, J. Liesener, and H. J. Tiziani, “The adaptive shack–hartmann sensor,” Opt. Commun. 216(4–6), 313–319 (2003).
[Crossref]

Opt. Eng. (1)

M. T. Gale, M. Rossi, J. Pedersen, and H. Schuetz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 33(11), 3556–3566 (1994).
[Crossref]

Opt. Express (7)

S. I. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12(25), 6366–6371 (2004).
[Crossref] [PubMed]

F. Wippermann, U. D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15(10), 6218–6231 (2007).
[Crossref] [PubMed]

A. Tripathi, T. V. Chokshi, and N. Chronis, “A high numerical aperture, polymer-based, planar microlens array,” Opt. Express 17(22), 19908–19918 (2009).
[Crossref] [PubMed]

B. Hao, H. Liu, F. Chen, Q. Yang, P. Qu, G. Du, J. Si, X. Wang, and X. Hou, “Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces,” Opt. Express 20(12), 12939–12948 (2012).
[Crossref] [PubMed]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref] [PubMed]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

P. C. Chen, Y. P. Chang, R. H. Zhang, C. C. Wu, and G. R. Tang, “Microfabricated microfluidic platforms for creating microlens array,” Opt. Express 25(14), 16101–16115 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (1)

J. Y. Kim, N. B. Brauer, V. Fakhfouri, D. L. Boiko, E. Charbon, G. Grutzner, and J. Brugger, “Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique,” Opt. Mater. Express 2(1), 259–269 (2011).
[Crossref]

Proc. IEEE (1)

M. Cho and M. Danshpanah, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2010).

Sens. Actuators A Phys. (1)

K. Totsu, K. Fujishiro, S. Tanaka, and M. Esashi, “Fabrication of three-dimensional microstructure using maskless gray-scale lithography,” Sens. Actuators A Phys. 130–131, 387–392 (2006).
[Crossref]

Surf. Sci. (1)

R. Tadmor, “Line energy, line tension and drop size,” Surf. Sci. 602(14), L108–L111 (2008).
[Crossref]

Other (2)

P. G. de Gennes, and F. B. W. D. Quere, Capillarity and Wetting Phenomena (Classical Continuum Physics, 2004).

B. C. Prorok, F. Barthelat, C. S. Korach, K. J. Grande-Allen, E. Lipke, G. Lykofatitits, and P. Zavattieri, Mechanics of Biological Systems and Materials, Vol. 5 (Mechanics, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Fabrication process of the concave MLA. (b) SEM image of the concave MLA fabricated with the condition of 40 s argon plasma treatment. (c) SEM image of the cross section of the concave microlens. (d) Photo of a fabricated MLA in an area of 1.6 cm × 1.6 cm.
Fig. 2
Fig. 2 (a) Fabrication of the convex MLA. (b) SEM image of the convex MLA.
Fig. 3
Fig. 3 (a) The contact angle measured after the UV exposure without the plasma treatment to the PDMS. (b) and (c) The contact angles measured after the UV exposure with the surface treatment to the PDMS for 40 s and 90 s. (d) The influence of the surface treatment to the PDMS over the contact angle.
Fig. 4
Fig. 4 (a)-(c) SEM images of the concave MLAs fabricated with the surface treatment of 20 s, 60 s and 120 s. (d) The cross-sectional profiles of the fabricated concave MLAs. (e) The influence of the surface treatment over the sag height and the focal length of the fabricated concave MLAs.
Fig. 5
Fig. 5 The influence of the size of the microholes over the focal length. Insets: α, β and γ are the cross profile of the microlens of different size.
Fig. 6
Fig. 6 (a) Imaging system for testing imaging performance of the fabricated concave MLA. (b) The image array of letter cluster 'USST' on the false focal plane of the concave MLA.
Fig. 7
Fig. 7 (a) Imaging system for testing the focusing performance of the replicated convex MLA. (b) The image of the focused light spots. (c) The intensity distribution of the light spots.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f = r 2 + h 2 2 h ( n 1 )
f = r cos θ ( n 1 )
cos θ = σ s g σ s l σ l g τ r σ l g

Metrics