Abstract

Studies indicated that a root mean square error (RMSE) of 3.7 K was found if dust aerosol was not considered in the traditional land surface temperature (LST) retrieval algorithm. To reduce the influence of dust aerosol on LST estimation, a three-channel algorithm is proposed using MODIS channels 29, 31, and 32 with model coefficients irrelevant to the aerosol optical depth (AOD). Compared with actual and estimated LSTs, the RMSEs are 1.8 K and 1.6 K for dry and wet atmospheres, respectively, when the AOD is 1.0. Sensitivity analyses considering instrument noise, land surface emissivity uncertainties, and the algorithm error itself show that the LST errors are 2.5 K and 1.7 K for dry and wet atmospheres, respectively, when the AOD is 1.0. Finally, some in situ measured LSTs at the Jichanghuangmo, Huazhaizi, and Yingke sites in northwest China are taken as referenced LST values and compared with the MODIS LST products MOD11_L2/MYD11_L2 and those estimated with the proposed method. The results show that the proposed method can improve the LST retrieval accuracy from 1.4 K to 2.2 K in dust aerosol atmospheres.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Land surface temperature retrieval from AMSR-E passive microwave data

Enyu Zhao, Caixia Gao, Xiaoguang Jiang, and Zhaoxia Liu
Opt. Express 25(20) A940-A952 (2017)

Land surface temperature retrieved from airborne multispectral scanner mid-infrared and thermal-infrared data

Yong-Gang Qian, Ning Wang, Ling-Ling Ma, Yao-Kai Liu, Hua Wu, Bo-Hui Tang, Ling-Li Tang, and Chuan-Rong Li
Opt. Express 24(2) A257-A269 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
    [Crossref] [PubMed]
  2. R. L. Tang and Z.-L. Li, “An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely-sensed instantaneous observations,” Geophys. Res. Lett. 44, 2319–2326 (2017).
  3. R. L. Tang and Z.-L. Li, “Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model,” J. Geophys. Res. Atmos. 122(19), 10177–10190 (2017).
    [Crossref]
  4. P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data,” Int. J. Appl. Earth Obs. 52(52), 338–348 (2016).
    [Crossref]
  5. P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous surface soil moisture dataset using combined optics and thermal infrared images,” Hydrol. Processes 31(6), 1398–1407 (2017).
    [Crossref]
  6. A. J. Arnfield, “Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23(1), 1–26 (2003).
    [Crossref]
  7. W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. M. Holtslag, “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,” J. Hydrol. (Amst.) 212(1–4), 198–212 (1998).
    [Crossref]
  8. P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
    [Crossref]
  9. R. L. Tang and Z.-L. Li, “An end-member based two-source approach for estimating soil and vegetation energy fluxes from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 55(10), 5818–5832 (2017).
    [Crossref]
  10. J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
    [Crossref]
  11. B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
    [Crossref]
  12. S.-B. Duan and Z.-L. Li, “Spatial downscaling of MODIS land surface temperatures using geographically weighted regression Case study in northern China,” IEEE Trans. Geosci. Remote Sens. 54(11), 6458–6469 (2016).
    [Crossref]
  13. S.-B. Duan, Z.-L. Li, J. Cheng, and P. Leng, “Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces,” ISPRS J. Photogramm 126, 1–10 (2017).
    [Crossref]
  14. Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
    [Crossref]
  15. S.-B. Duan and Z.-L. Li, “Intercomparison of Operational Land Surface Temperature Products Derived from MSG-SEVIRI and Terra/Aqua-MODIS Data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(8), 4163–4170 (2015).
    [Crossref]
  16. G.-M. Jiang, Z.-L. Li, and F. Nerry, “Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI,” Remote Sens. Environ. 105(4), 326–340 (2006).
    [Crossref]
  17. Z. Wan, “New refinements and validation of the MODIS land-surface temperature/emissivity products,” Remote Sens. Environ. 112(1), 59–74 (2008).
    [Crossref]
  18. B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data,” Sensors (Basel) 8(2), 933–951 (2008).
    [Crossref] [PubMed]
  19. X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
    [Crossref]
  20. Z. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
    [Crossref]
  21. E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
    [Crossref]
  22. D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
    [Crossref]
  23. J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
    [Crossref]
  24. N. R. Nalli and L. L. Stowe, “Aerosol correction for remotely sensed sea surface temperatures from the National Oceanic and Atmospheric Administration advanced very high resolution radiometer,” J. Geophys. Res. 107(C10), 1–18 (2002).
    [Crossref]
  25. S. J. Brown, A. R. Harris, I. M. Mason, and A. M. Závody, “New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer,” J. Geophys. Res. 102(C13), 27973–27989 (1997).
    [Crossref]
  26. L. Xu, J. Zhang, G. Zhang, and H. Chen, “Simulation of remote sensing of sea surface temperature from space: influences of cirrus clouds and stratospheric aerosols on sea surface temperatures derived from the VISSR Atmospheric Sounder,” Int. J. Remote Sens. 15(13), 2599–2614 (1994).
    [Crossref]
  27. S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102(D14), 17069–17079 (1997).
    [Crossref]
  28. S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
    [Crossref]
  29. J. A. Sobrino and N. Raissouni, “Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco,” Int. J. Remote Sens. 21(2), 353–366 (2000).
    [Crossref]
  30. A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
    [Crossref]
  31. A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
    [Crossref]
  32. Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
    [Crossref]
  33. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
    [Crossref]
  34. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
    [Crossref]
  35. P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
    [Crossref]
  36. L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
    [Crossref]
  37. F. C. Myrtha, K. Claudia, and D. Stefan, “Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005,” Int. J. Remote Sens. 33(22), 7165–7183 (2012).
    [Crossref]
  38. J. A. Sobrino, C. Coll, and C. Vicente, “Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5,” Remote Sens. Environ. 38(1), 19–34 (1991).
    [Crossref]
  39. J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17(11), 2089–2114 (1996).
    [Crossref]
  40. Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
    [Crossref]
  41. F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
    [Crossref]
  42. H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
    [Crossref]
  43. K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
    [Crossref]

2017 (7)

R. L. Tang and Z.-L. Li, “An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely-sensed instantaneous observations,” Geophys. Res. Lett. 44, 2319–2326 (2017).

R. L. Tang and Z.-L. Li, “Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model,” J. Geophys. Res. Atmos. 122(19), 10177–10190 (2017).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous surface soil moisture dataset using combined optics and thermal infrared images,” Hydrol. Processes 31(6), 1398–1407 (2017).
[Crossref]

P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
[Crossref]

R. L. Tang and Z.-L. Li, “An end-member based two-source approach for estimating soil and vegetation energy fluxes from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 55(10), 5818–5832 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, J. Cheng, and P. Leng, “Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces,” ISPRS J. Photogramm 126, 1–10 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

2016 (2)

S.-B. Duan and Z.-L. Li, “Spatial downscaling of MODIS land surface temperatures using geographically weighted regression Case study in northern China,” IEEE Trans. Geosci. Remote Sens. 54(11), 6458–6469 (2016).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data,” Int. J. Appl. Earth Obs. 52(52), 338–348 (2016).
[Crossref]

2015 (3)

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

S.-B. Duan and Z.-L. Li, “Intercomparison of Operational Land Surface Temperature Products Derived from MSG-SEVIRI and Terra/Aqua-MODIS Data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(8), 4163–4170 (2015).
[Crossref]

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

2014 (1)

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

2013 (3)

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

2012 (1)

F. C. Myrtha, K. Claudia, and D. Stefan, “Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005,” Int. J. Remote Sens. 33(22), 7165–7183 (2012).
[Crossref]

2009 (2)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

2008 (4)

Z. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

Z. Wan, “New refinements and validation of the MODIS land-surface temperature/emissivity products,” Remote Sens. Environ. 112(1), 59–74 (2008).
[Crossref]

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
[Crossref]

2006 (1)

G.-M. Jiang, Z.-L. Li, and F. Nerry, “Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI,” Remote Sens. Environ. 105(4), 326–340 (2006).
[Crossref]

2005 (1)

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

2004 (1)

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

2003 (2)

A. J. Arnfield, “Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23(1), 1–26 (2003).
[Crossref]

E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
[Crossref]

2002 (1)

N. R. Nalli and L. L. Stowe, “Aerosol correction for remotely sensed sea surface temperatures from the National Oceanic and Atmospheric Administration advanced very high resolution radiometer,” J. Geophys. Res. 107(C10), 1–18 (2002).
[Crossref]

2001 (2)

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

2000 (1)

J. A. Sobrino and N. Raissouni, “Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco,” Int. J. Remote Sens. 21(2), 353–366 (2000).
[Crossref]

1999 (1)

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

1998 (2)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. M. Holtslag, “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,” J. Hydrol. (Amst.) 212(1–4), 198–212 (1998).
[Crossref]

1997 (2)

S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102(D14), 17069–17079 (1997).
[Crossref]

S. J. Brown, A. R. Harris, I. M. Mason, and A. M. Závody, “New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer,” J. Geophys. Res. 102(C13), 27973–27989 (1997).
[Crossref]

1996 (1)

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17(11), 2089–2114 (1996).
[Crossref]

1994 (1)

L. Xu, J. Zhang, G. Zhang, and H. Chen, “Simulation of remote sensing of sea surface temperature from space: influences of cirrus clouds and stratospheric aerosols on sea surface temperatures derived from the VISSR Atmospheric Sounder,” Int. J. Remote Sens. 15(13), 2599–2614 (1994).
[Crossref]

1993 (1)

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

1991 (1)

J. A. Sobrino, C. Coll, and C. Vicente, “Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5,” Remote Sens. Environ. 38(1), 19–34 (1991).
[Crossref]

1990 (1)

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[Crossref]

1985 (1)

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Acharya, P. K.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Ackerman, S. A.

S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102(D14), 17069–17079 (1997).
[Crossref]

Adler-Golden, S. M.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Allred, C. L.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Anderson, G. P.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Arbelo, M.

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

Arnfield, A. J.

A. J. Arnfield, “Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23(1), 1–26 (2003).
[Crossref]

Baldridge, A. M.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Bastiaanssen, W. G. M.

W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. M. Holtslag, “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,” J. Hydrol. (Amst.) 212(1–4), 198–212 (1998).
[Crossref]

Becker, F.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17(11), 2089–2114 (1996).
[Crossref]

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[Crossref]

Berk, A.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Bernstein, L. S.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Bi, Y.

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Bodas-salcedo, A.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Brown, S. J.

S. J. Brown, A. R. Harris, I. M. Mason, and A. M. Závody, “New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer,” J. Geophys. Res. 102(C13), 27973–27989 (1997).
[Crossref]

Cao, B.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Chedin, A.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Chen, H.

L. Xu, J. Zhang, G. Zhang, and H. Chen, “Simulation of remote sensing of sea surface temperature from space: influences of cirrus clouds and stratospheric aerosols on sea surface temperatures derived from the VISSR Atmospheric Sounder,” Int. J. Remote Sens. 15(13), 2599–2614 (1994).
[Crossref]

Cheng, J.

S.-B. Duan, Z.-L. Li, J. Cheng, and P. Leng, “Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces,” ISPRS J. Photogramm 126, 1–10 (2017).
[Crossref]

Chetwynd, J. H.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Chin, M.

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

Chu, D. A.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Claudia, K.

F. C. Myrtha, K. Claudia, and D. Stefan, “Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005,” Int. J. Remote Sens. 33(22), 7165–7183 (2012).
[Crossref]

Coll, C.

J. A. Sobrino, C. Coll, and C. Vicente, “Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5,” Remote Sens. Environ. 38(1), 19–34 (1991).
[Crossref]

Deque, M.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Diaz, J. P.

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

Dothe, H.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Du, Y.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Duan, S.-B.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, J. Cheng, and P. Leng, “Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces,” ISPRS J. Photogramm 126, 1–10 (2017).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous surface soil moisture dataset using combined optics and thermal infrared images,” Hydrol. Processes 31(6), 1398–1407 (2017).
[Crossref]

P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data,” Int. J. Appl. Earth Obs. 52(52), 338–348 (2016).
[Crossref]

S.-B. Duan and Z.-L. Li, “Spatial downscaling of MODIS land surface temperatures using geographically weighted regression Case study in northern China,” IEEE Trans. Geosci. Remote Sens. 54(11), 6458–6469 (2016).
[Crossref]

S.-B. Duan and Z.-L. Li, “Intercomparison of Operational Land Surface Temperature Products Derived from MSG-SEVIRI and Terra/Aqua-MODIS Data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(8), 4163–4170 (2015).
[Crossref]

Dubovik, O.

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

Eck, T. F.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

El-Kharraz, J.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Evans, R.

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

Expósito, F. J.

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

Fan, X.

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

Feddes, R. A.

W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. M. Holtslag, “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,” J. Hydrol. (Amst.) 212(1–4), 198–212 (1998).
[Crossref]

Fermepin, S.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Gao, M.-F.

P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
[Crossref]

Ginoux, P.

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

Gómez, M.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Grove, C. I.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Harris, A. R.

S. J. Brown, A. R. Harris, I. M. Mason, and A. M. Závody, “New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer,” J. Geophys. Res. 102(C13), 27973–27989 (1997).
[Crossref]

Haywood, J. M.

E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
[Crossref]

Hess, M.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Highwood, E. J.

E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
[Crossref]

Hoke, M. L.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Holben, B.

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

Holben, B. N.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Holtslag, A. A. M.

W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. M. Holtslag, “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,” J. Hydrol. (Amst.) 212(1–4), 198–212 (1998).
[Crossref]

Hook, S. J.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Huo, H.-Y.

P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
[Crossref]

Ichoku, C.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Jakob, C.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Jeong, L. S.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Jiang, G.-M.

G.-M. Jiang, Z.-L. Li, and F. Nerry, “Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI,” Remote Sens. Environ. 105(4), 326–340 (2006).
[Crossref]

Jiménez-Muñoz, J. C.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Kaufman, Y. J.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Kleidman, R. G.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Klein, S. A.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Koepke, P.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Leng, P.

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, J. Cheng, and P. Leng, “Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces,” ISPRS J. Photogramm 126, 1–10 (2017).
[Crossref]

P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous surface soil moisture dataset using combined optics and thermal infrared images,” Hydrol. Processes 31(6), 1398–1407 (2017).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data,” Int. J. Appl. Earth Obs. 52(52), 338–348 (2016).
[Crossref]

Levy, R. C.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Li, H.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Li, R.-R.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Li, Z.-L.

R. L. Tang and Z.-L. Li, “Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model,” J. Geophys. Res. Atmos. 122(19), 10177–10190 (2017).
[Crossref]

R. L. Tang and Z.-L. Li, “An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely-sensed instantaneous observations,” Geophys. Res. Lett. 44, 2319–2326 (2017).

P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous surface soil moisture dataset using combined optics and thermal infrared images,” Hydrol. Processes 31(6), 1398–1407 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, J. Cheng, and P. Leng, “Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces,” ISPRS J. Photogramm 126, 1–10 (2017).
[Crossref]

R. L. Tang and Z.-L. Li, “An end-member based two-source approach for estimating soil and vegetation energy fluxes from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 55(10), 5818–5832 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

S.-B. Duan and Z.-L. Li, “Spatial downscaling of MODIS land surface temperatures using geographically weighted regression Case study in northern China,” IEEE Trans. Geosci. Remote Sens. 54(11), 6458–6469 (2016).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data,” Int. J. Appl. Earth Obs. 52(52), 338–348 (2016).
[Crossref]

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

S.-B. Duan and Z.-L. Li, “Intercomparison of Operational Land Surface Temperature Products Derived from MSG-SEVIRI and Terra/Aqua-MODIS Data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(8), 4163–4170 (2015).
[Crossref]

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Z. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

G.-M. Jiang, Z.-L. Li, and F. Nerry, “Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI,” Remote Sens. Environ. 105(4), 326–340 (2006).
[Crossref]

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17(11), 2089–2114 (1996).
[Crossref]

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[Crossref]

Lin, S.-J.

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

Liu, D.

D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
[Crossref]

Liu, Q.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Liu, Y.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Liu, Z.

D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
[Crossref]

Martins, J. V.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Mason, I. M.

S. J. Brown, A. R. Harris, I. M. Mason, and A. M. Závody, “New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer,” J. Geophys. Res. 102(C13), 27973–27989 (1997).
[Crossref]

Matthew, M. W.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Mattoo, S.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Medeiros, B.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Menenti, M.

W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. M. Holtslag, “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,” J. Hydrol. (Amst.) 212(1–4), 198–212 (1998).
[Crossref]

Moulinier, P.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Myrtha, F. C.

F. C. Myrtha, K. Claudia, and D. Stefan, “Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005,” Int. J. Remote Sens. 33(22), 7165–7183 (2012).
[Crossref]

Nalli, N. R.

N. R. Nalli and L. L. Stowe, “Aerosol correction for remotely sensed sea surface temperatures from the National Oceanic and Atmospheric Administration advanced very high resolution radiometer,” J. Geophys. Res. 107(C10), 1–18 (2002).
[Crossref]

Nerry, F.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

G.-M. Jiang, Z.-L. Li, and F. Nerry, “Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI,” Remote Sens. Environ. 105(4), 326–340 (2006).
[Crossref]

Newman, S. M.

E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
[Crossref]

Podestá, G.

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

Prospero, J. M.

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

Pukall, B.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Qiu, S.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Raissouni, N.

J. A. Sobrino and N. Raissouni, “Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco,” Int. J. Remote Sens. 21(2), 353–366 (2000).
[Crossref]

Remer, L. A.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Ren, H.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Richtsmeier, S. C.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Rivera, G.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

Romaguera, M.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Schult, I.

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Scott, N. A.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Senior, C. A.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Shao, K.

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Silverstone, M. D.

E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
[Crossref]

Sobrino, J. A.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

J. A. Sobrino and N. Raissouni, “Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco,” Int. J. Remote Sens. 21(2), 353–366 (2000).
[Crossref]

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17(11), 2089–2114 (1996).
[Crossref]

J. A. Sobrino, C. Coll, and C. Vicente, “Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5,” Remote Sens. Environ. 38(1), 19–34 (1991).
[Crossref]

Song, X. N.

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous surface soil moisture dataset using combined optics and thermal infrared images,” Hydrol. Processes 31(6), 1398–1407 (2017).
[Crossref]

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data,” Int. J. Appl. Earth Obs. 52(52), 338–348 (2016).
[Crossref]

Sòria, G.

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Stefan, D.

F. C. Myrtha, K. Claudia, and D. Stefan, “Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005,” Int. J. Remote Sens. 33(22), 7165–7183 (2012).
[Crossref]

Stoll, M. P.

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17(11), 2089–2114 (1996).
[Crossref]

Stowe, L. L.

N. R. Nalli and L. L. Stowe, “Aerosol correction for remotely sensed sea surface temperatures from the National Oceanic and Atmospheric Administration advanced very high resolution radiometer,” J. Geophys. Res. 107(C10), 1–18 (2002).
[Crossref]

Sun, D.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Tang, B.

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Tang, B.-H.

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Tang, R.

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Tang, R. L.

R. L. Tang and Z.-L. Li, “Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model,” J. Geophys. Res. Atmos. 122(19), 10177–10190 (2017).
[Crossref]

R. L. Tang and Z.-L. Li, “An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely-sensed instantaneous observations,” Geophys. Res. Lett. 44, 2319–2326 (2017).

R. L. Tang and Z.-L. Li, “An end-member based two-source approach for estimating soil and vegetation energy fluxes from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 55(10), 5818–5832 (2017).
[Crossref]

Tanré, D.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Taylor, J. P.

E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
[Crossref]

Tegen, I.

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

Trepte, C.

D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
[Crossref]

Trigo, I. F.

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Vermote, E.

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

Vicente, C.

J. A. Sobrino, C. Coll, and C. Vicente, “Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5,” Remote Sens. Environ. 38(1), 19–34 (1991).
[Crossref]

Wahiche, C.

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

Wan, Z.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Z. Wan, “New refinements and validation of the MODIS land-surface temperature/emissivity products,” Remote Sens. Environ. 112(1), 59–74 (2008).
[Crossref]

Z. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

Wang, H.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Wang, N.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Wang, Z.

D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
[Crossref]

Watanabe, M.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Williams, K. D.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Williamson, D. L.

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

Winker, D.

D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
[Crossref]

Wu, H.

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Xia, J.

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Xu, L.

L. Xu, J. Zhang, G. Zhang, and H. Chen, “Simulation of remote sensing of sea surface temperature from space: influences of cirrus clouds and stratospheric aerosols on sea surface temperatures derived from the VISSR Atmospheric Sounder,” Int. J. Remote Sens. 15(13), 2599–2614 (1994).
[Crossref]

Yan, G.

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Yu, Y.

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Závody, A. M.

S. J. Brown, A. R. Harris, I. M. Mason, and A. M. Závody, “New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer,” J. Geophys. Res. 102(C13), 27973–27989 (1997).
[Crossref]

Zhang, G.

L. Xu, J. Zhang, G. Zhang, and H. Chen, “Simulation of remote sensing of sea surface temperature from space: influences of cirrus clouds and stratospheric aerosols on sea surface temperatures derived from the VISSR Atmospheric Sounder,” Int. J. Remote Sens. 15(13), 2599–2614 (1994).
[Crossref]

Zhang, J.

L. Xu, J. Zhang, G. Zhang, and H. Chen, “Simulation of remote sensing of sea surface temperature from space: influences of cirrus clouds and stratospheric aerosols on sea surface temperatures derived from the VISSR Atmospheric Sounder,” Int. J. Remote Sens. 15(13), 2599–2614 (1994).
[Crossref]

Zhang, X.

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Zhou, C.

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Zhou, G.

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79(5), 831–844 (1998).
[Crossref]

Geophys. Res. Lett. (2)

J. P. Diaz, M. Arbelo, F. J. Expósito, G. Podestá, J. M. Prospero, and R. Evans, “Relationship between errors in AVHRR-derived sea surface temperature and the TOMS Aerosol Index,” Geophys. Res. Lett. 28(10), 1989–1992 (2001).
[Crossref]

R. L. Tang and Z.-L. Li, “An improved constant evaporative fraction method for estimating daily evapotranspiration from remotely-sensed instantaneous observations,” Geophys. Res. Lett. 44, 2319–2326 (2017).

Hydrol. Processes (1)

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “Generation of continuous surface soil moisture dataset using combined optics and thermal infrared images,” Hydrol. Processes 31(6), 1398–1407 (2017).
[Crossref]

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (2)

S.-B. Duan and Z.-L. Li, “Intercomparison of Operational Land Surface Temperature Products Derived from MSG-SEVIRI and Terra/Aqua-MODIS Data,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(8), 4163–4170 (2015).
[Crossref]

X. Fan, B.-H. Tang, H. Wu, G. Yan, Z.-L. Li, G. Zhou, K. Shao, and Y. Bi, “Extension of the generalized split-window algorithm for land surface temperature retrieval to atmospheres with heavy dust aerosol loading,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(2), 825–834 (2015).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (2)

R. L. Tang and Z.-L. Li, “An end-member based two-source approach for estimating soil and vegetation energy fluxes from remote sensing data,” IEEE Trans. Geosci. Remote Sens. 55(10), 5818–5832 (2017).
[Crossref]

S.-B. Duan and Z.-L. Li, “Spatial downscaling of MODIS land surface temperatures using geographically weighted regression Case study in northern China,” IEEE Trans. Geosci. Remote Sens. 54(11), 6458–6469 (2016).
[Crossref]

Int. J. Appl. Earth Obs. (1)

P. Leng, X. N. Song, S.-B. Duan, and Z.-L. Li, “A practical algorithm for estimating surface soil moisture using combined optical and thermal infrared data,” Int. J. Appl. Earth Obs. 52(52), 338–348 (2016).
[Crossref]

Int. J. Climatol. (1)

A. J. Arnfield, “Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23(1), 1–26 (2003).
[Crossref]

Int. J. Remote Sens. (8)

J. A. Sobrino, J. C. Jiménez-Muñoz, J. El-Kharraz, M. Gómez, M. Romaguera, and G. Sòria, “Single-channel and two-channel methods for land surface temperature retrieval from DAIS data and its application to the Barrax site,” Int. J. Remote Sens. 25(1), 215–230 (2004).
[Crossref]

Z. Wan and Z.-L. Li, “Radiance-based validation of the V5 MODIS land-surface temperature product,” Int. J. Remote Sens. 29(17–18), 5373–5395 (2008).
[Crossref]

L. Xu, J. Zhang, G. Zhang, and H. Chen, “Simulation of remote sensing of sea surface temperature from space: influences of cirrus clouds and stratospheric aerosols on sea surface temperatures derived from the VISSR Atmospheric Sounder,” Int. J. Remote Sens. 15(13), 2599–2614 (1994).
[Crossref]

J. A. Sobrino and N. Raissouni, “Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco,” Int. J. Remote Sens. 21(2), 353–366 (2000).
[Crossref]

F. C. Myrtha, K. Claudia, and D. Stefan, “Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005,” Int. J. Remote Sens. 33(22), 7165–7183 (2012).
[Crossref]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, J. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34(9–10), 3084–3127 (2013).
[Crossref]

J. A. Sobrino, Z.-L. Li, M. P. Stoll, and F. Becker, “Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data,” Int. J. Remote Sens. 17(11), 2089–2114 (1996).
[Crossref]

F. Becker and Z.-L. Li, “Towards a local split window method over land surfaces,” Int. J. Remote Sens. 11(3), 369–393 (1990).
[Crossref]

ISPRS J. Photogramm (2)

P. Leng, Z.-L. Li, S.-B. Duan, M.-F. Gao, and H.-Y. Huo, “A practical approach for deriving all-weather soil moisture content using combined satellite and meteorological data,” ISPRS J. Photogramm 131C, 40–51 (2017).
[Crossref]

S.-B. Duan, Z.-L. Li, J. Cheng, and P. Leng, “Cross-satellite comparison of operational land surface temperature products derived from MODIS and ASTER data over bare soil surfaces,” ISPRS J. Photogramm 126, 1–10 (2017).
[Crossref]

J. Appl. Meteorol. (1)

A. Chedin, N. A. Scott, C. Wahiche, and P. Moulinier, “The improved initialization inversion method: a high resolution physical method for temperature retrievals from satellites of the TIROS-N series,” J. Appl. Meteorol. 24(2), 128–143 (1985).
[Crossref]

J. Atmos. Sci. (1)

L. A. Remer, Y. J. Kaufman, D. Tanré, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levy, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62(4), 947–973 (2005).
[Crossref]

J. Clim. (1)

K. D. Williams, A. Bodas-salcedo, M. Deque, S. Fermepin, B. Medeiros, M. Watanabe, C. Jakob, S. A. Klein, C. A. Senior, and D. L. Williamson, “The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models,” J. Clim. 26(10), 3258–3274 (2013).
[Crossref]

J. Geophys. Res. (6)

P. Ginoux, M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, “Sources and distributions of dust aerosols simulated with the GOCART model,” J. Geophys. Res. 106(D17), 20255–20273 (2001).
[Crossref]

N. R. Nalli and L. L. Stowe, “Aerosol correction for remotely sensed sea surface temperatures from the National Oceanic and Atmospheric Administration advanced very high resolution radiometer,” J. Geophys. Res. 107(C10), 1–18 (2002).
[Crossref]

S. J. Brown, A. R. Harris, I. M. Mason, and A. M. Závody, “New aerosol robust sea surface temperature algorithms for the along-track scanning radiometer,” J. Geophys. Res. 102(C13), 27973–27989 (1997).
[Crossref]

S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102(D14), 17069–17079 (1997).
[Crossref]

E. J. Highwood, J. M. Haywood, M. D. Silverstone, S. M. Newman, and J. P. Taylor, “Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE):2. Terrestrial spectrum,” J. Geophys. Res. 108(D18), 8578 (2003).
[Crossref]

D. Liu, Z. Wang, Z. Liu, D. Winker, and C. Trepte, “A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements,” J. Geophys. Res. 113(D16), 214 (2008).
[Crossref]

J. Geophys. Res. Atmos. (1)

R. L. Tang and Z.-L. Li, “Estimating daily evapotranspiration from remotely sensed instantaneous observations with simplified derivations of a theoretical model,” J. Geophys. Res. Atmos. 122(19), 10177–10190 (2017).
[Crossref]

J. Hydrol. (Amst.) (1)

W. G. M. Bastiaanssen, M. Menenti, R. A. Feddes, and A. A. M. Holtslag, “A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation,” J. Hydrol. (Amst.) 212(1–4), 198–212 (1998).
[Crossref]

Proc. SPIE (1)

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, “MODTRAN4 radiative transfer model for atmospheric correction,” Proc. SPIE 3756, 348–353 (1999).
[Crossref]

Remote Sens. (1)

B.-H. Tang, K. Shao, Z.-L. Li, H. Wu, F. Nerry, and G. Zhou, “Estimation and validation of land surface temperature from Chinese second generation polar-orbiting FY-3A VIRR data,” Remote Sens. 7(3), 3250–3273 (2015).
[Crossref]

Remote Sens. Environ. (8)

G.-M. Jiang, Z.-L. Li, and F. Nerry, “Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI,” Remote Sens. Environ. 105(4), 326–340 (2006).
[Crossref]

Z. Wan, “New refinements and validation of the MODIS land-surface temperature/emissivity products,” Remote Sens. Environ. 112(1), 59–74 (2008).
[Crossref]

S.-B. Duan, Z.-L. Li, and P. Leng, “A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data,” Remote Sens. Environ. 195, 107–117 (2017).
[Crossref]

Z.-L. Li, B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino, “Satellite-derived land surface temperature: Current status and perspectives,” Remote Sens. Environ. 131(131), 14–37 (2013).
[Crossref]

J. A. Sobrino, C. Coll, and C. Vicente, “Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5,” Remote Sens. Environ. 38(1), 19–34 (1991).
[Crossref]

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113(4), 711–715 (2009).
[Crossref]

H. Li, D. Sun, Y. Yu, H. Wang, Y. Liu, Q. Liu, Y. Du, H. Wang, and B. Cao, “Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China,” Remote Sens. Environ. 142(1), 111–121 (2014).
[Crossref]

Z.-L. Li and F. Becker, “Feasibility of land surface temperature and emissivity determination from AVHRR data,” Remote Sens. Environ. 43(1), 67–85 (1993).
[Crossref]

Sensors (Basel) (2)

B. Tang, Y. Bi, Z.-L. Li, and J. Xia, “Generalized split-window algorithm for estimate of land surface temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data,” Sensors (Basel) 8(2), 933–951 (2008).
[Crossref] [PubMed]

Z.-L. Li, R. Tang, Z. Wan, Y. Bi, C. Zhou, B. Tang, G. Yan, and X. Zhang, “A review of current methodologies for regional evapotranspiration estimation from remotely sensed data,” Sensors (Basel) 9(5), 3801–3853 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Atmospheric WVC as a function of the temperature (T0) in the first layer of the 180 selected atmospheric profiles from TIGR.
Fig. 2
Fig. 2 Dust aerosol extinction coefficient, single scattering albedo, and asymmetry parameter of MODIS channels 29, 31, and 32. The extinction coefficients are normalized to 1.0 at 0.55 μm.
Fig. 3
Fig. 3 Procedures for generating the Data-simu simulated data sets and the calculation of the coefficients for the proposed three-channel LST retrieval algorithm.
Fig. 4
Fig. 4 δ(T320) values versus atmospheric WVC and land surface emissivity in channel 32. δ(T320) is the brightness temperature difference between the T320 that is measured at the top of the dust aerosol and the corresponding values of T32’ with the atmospheres truncated above the top of the dust aerosol height.
Fig. 5
Fig. 5 The values of A1, A2, A3, and A0 in Eq. (9) versus total atmospheric WVC.
Fig. 6
Fig. 6 RMSEs of the LST estimated from the proposed three-channel algorithm versus the AOD for different atmospheric WVC ranges: [0, 1.5], [1.0, 2.5], and [2.0, 3.0] g/cm2. The hollow symbols represent the two-channel algorithm and the solid symbols represent the three-channel algorithm.
Fig. 7
Fig. 7 LST errors δ(T29), δ(T31), δ(T32), δε1), δε2), and δ(ε2), and δ(alg) caused by the uncertainties of T29, T31, T32, Δε1, Δε2, and ε2 and the algorithm error itself, and the total LST errors δ(LSTtotal) versus different atmospheric WVC groups.
Fig. 8
Fig. 8 The differences between the LSTs extracted from MOD11_L2/MYD11_L2 and the Ts calculated from in situ data versus AOD for different test sites (solid circles); the differences between the LSTs retrieved from the new three-channel algorithm and Ts are also shown in this figure (hollow circles). (a) and (b) show the JCHM site with MOD11_L2 and MYD11_L2 data, respectively, (c) and (d) show the HZZ site with MOD11_L2 and MYD11_L2 data, respectively, and (e) and (f) show the YK site with MOD11_L2 and MYD11_L2 data, respectively.

Tables (3)

Tables Icon

Table 1 The mean, maximum, and STD of δ(Ti0) (i = 29, 31, or 32) in the three MODIS channels.

Tables Icon

Table 2 RMSEs of LST estimated using Eq. (6) for different MODIS channel combinations.

Tables Icon

Table 3 Coefficients of ci (i = 0-6) in Eq. (16) for different WVC groups.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ε i u = 1 τ i u
B i ( T i ) = B i ( T i 0 ) τ i u + B i ( T a t m u ) ( 1 τ i u )
B i ( T ) = B i ( T i ) + ( T T i ) B i ( T i ) T ( T = T i 0 o r T a t m u )
T i = T i 0 τ i u + T a t m u ( 1 τ i u )
B i ( T i 0 ) = B i ( T s ) ε i τ i + R i a t m l ( 1 ε i ) π τ i + R i a t m l + R i a t m u ( 1 ε i ) π r i
T s = T i 0 + a 1 ( T i 0 T j 0 ) + a 2 ( 1 - ε 1 ) + a 3 Δ ε 1 + a 4 W ( 1 - ε 1 ) + a 5 W Δ ε 1 + a 0
T s = T i τ i u + a 1 ( T i τ i u T j τ j u ) + T a t m u [ a 1 ( 1 τ j u ) τ j u a 1 ( 1 τ i u ) τ i u ( 1 τ i u ) τ i u ] + a 2 ( 1 - ε 1 ) + a 3 Δ ε 1 + a 4 W ( 1 - ε 1 ) + a 5 W Δ ε 1 + a 0
T s = T i τ i u + b 1 ( T i τ i u T k τ k u ) + T a t m u [ b 1 ( 1 τ k u ) τ k u b 1 ( 1 τ i u ) τ i u ( 1 τ i u ) τ i u ] + b 2 ( 1 - ε 2 ) + b 3 Δ ε 2 + b 4 W ( 1 - ε 2 ) + b 5 W Δ ε 2 + b 0
T s = T i + A 1 ( T i T j ) + A 2 ( T i T k ) + A 3 [ a 2 ( 1 - ε 1 ) + a 3 Δ ε 1 + a 4 W ( 1 - ε 1 ) + a 5 W Δ ε 1 ] + A 4 [ b 2 ( 1 - ε 2 ) + b 3 Δ ε 2 + b 4 W ( 1 - ε 2 ) + b 5 W Δ ε 2 ] + A 0
A 1 = a 1 M 2 τ j u ( M 2 M 1 ) ,
A 2 = b 1 M 1 τ k u ( M 2 M 1 ) ,
A 3 = M 2 M 2 M 1 ,
A 4 = M 1 M 2 M 1 = 1 A 3 ,
A 0 = M 2 a 0 M 1 b 0 M 2 M 1 .
T s = T i + c 1 ( T i T j ) + c 2 ( T i T k ) + c 3 Δ ε 1 + c 4 ( 1 - ε 2 ) + c 5 Δ ε 2 + c 0
T s = T 31 + c 1 ( T 31 T 29 ) + c 2 ( T 31 T 32 ) + c 3 Δ ε 1 + c 4 Δ ε 2 + c 5 ( 1 - ε 2 ) + c 6 ( s e c a n t ( V Z A ) 1 ) + c 0
T s = T i + a 1 ( T i T j ) + a 2 ( 1 - ε 1 ) + a 3 Δ ε 1 + a 4 ( s e c a n t ( V Z A ) 1 ) + a 0
δ ( L S T t o t a l ) = δ ( T 29 ) 2 + δ ( T 31 ) 2 + δ ( T 32 ) 2 + δ ( Δ ε 1 ) 2 + δ ( Δ ε 2 ) 2 + δ ( ε 2 ) 2 + δ ( a l g ) 2
B ( T s ) = [ B ( T u ) ( 1 ε ) B ( T d ) ] / ε
T s = [ L ( 1 ε b ) L ε b σ ] 1 4
δ ( T s ) = δ ( T i n s t r u ) 2 + δ ( T s p a t i a l ) 2 + δ ( T e m i ) 2

Metrics