A. V. Le and C. S. Won, “Key-point based stereo matching and its application to interpolations,” Multidimension. Syst. Signal Process. 28, 265–280 (2017).
[Crossref]
R. A. Hamzah, H. Ibrahim, and A. H. A. Hassan, “Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation,” J. Visual Commun. Image Represent. 42, 145–160 (2017).
[Crossref]
Y.-H. Kim, J. Koo, and S. Lee, “Adaptive descriptor-based robust stereo matching under radiometric changes,” Pattern Recognit. Lett. 78, 41–47 (2016).
[Crossref]
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
J. Yang, Z. Gao, R. Chu, Y. Liu, and Y. Lin, “New stereo shooting evaluation metric based on stereoscopic distortion and subjective perception,” Opt. Rev. 22, 459–468 (2015).
[Crossref]
K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013).
[Crossref]
[PubMed]
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013).
[Crossref]
Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 807–822 (2011).
[Crossref]
H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 1582–1599 (2009).
[Crossref]
[PubMed]
K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006).
[Crossref]
[PubMed]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision 60, 91–110 (2004).
[Crossref]
D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47, 7–42 (2002).
[Crossref]
S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,” Int. J. Comput. Vision 35, 269–293 (1999).
[Crossref]
S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,” Int. J. Comput. Vision 35, 269–293 (1999).
[Crossref]
P. Pinggera, T. Breckon, and H. Bischof, “On cross-spectral stereo matching using dense gradient features,” in “Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,” (2012).
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013).
[Crossref]
P. Pinggera, T. Breckon, and H. Bischof, “On cross-spectral stereo matching using dense gradient features,” in “Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,” (2012).
J. Yang, Z. Gao, R. Chu, Y. Liu, and Y. Lin, “New stereo shooting evaluation metric based on stereoscopic distortion and subjective perception,” Opt. Rev. 22, 459–468 (2015).
[Crossref]
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in “2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (IEEE, 2015), pp. 2103–2112.
J. Yang, Z. Gao, R. Chu, Y. Liu, and Y. Lin, “New stereo shooting evaluation metric based on stereoscopic distortion and subjective perception,” Opt. Rev. 22, 459–468 (2015).
[Crossref]
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013).
[Crossref]
H.-G. Jeon, J.-Y. Lee, S. Im, H. Ha, and I. So Kweon, “Stereo matching with color and monochrome cameras in low-light conditions,” in “Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,” (2016), pp. 4086–4094.
S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in “2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (IEEE, 2015), pp. 2103–2112.
R. A. Hamzah, H. Ibrahim, and A. H. A. Hassan, “Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation,” J. Visual Commun. Image Represent. 42, 145–160 (2017).
[Crossref]
R. A. Hamzah, H. Ibrahim, and A. H. A. Hassan, “Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation,” J. Visual Commun. Image Represent. 42, 145–160 (2017).
[Crossref]
K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013).
[Crossref]
[PubMed]
K. He, J. Sun, and X. Tang, “Guided image filtering,” in “European conference on computer vision,” (Springer, 2010), pp. 1–14.
Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 807–822 (2011).
[Crossref]
H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 1582–1599 (2009).
[Crossref]
[PubMed]
H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching and mutual information,” in “2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),”, vol. 2 (IEEE, 2005), vol. 2, pp. 807–814.
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013).
[Crossref]
R. A. Hamzah, H. Ibrahim, and A. H. A. Hassan, “Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation,” J. Visual Commun. Image Represent. 42, 145–160 (2017).
[Crossref]
H.-G. Jeon, J.-Y. Lee, S. Im, H. Ha, and I. So Kweon, “Stereo matching with color and monochrome cameras in low-light conditions,” in “Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,” (2016), pp. 4086–4094.
H.-G. Jeon, J.-Y. Lee, S. Im, H. Ha, and I. So Kweon, “Stereo matching with color and monochrome cameras in low-light conditions,” in “Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,” (2016), pp. 4086–4094.
S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in “2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (IEEE, 2015), pp. 2103–2112.
Y.-H. Kim, J. Koo, and S. Lee, “Adaptive descriptor-based robust stereo matching under radiometric changes,” Pattern Recognit. Lett. 78, 41–47 (2016).
[Crossref]
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
Y.-H. Kim, J. Koo, and S. Lee, “Adaptive descriptor-based robust stereo matching under radiometric changes,” Pattern Recognit. Lett. 78, 41–47 (2016).
[Crossref]
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006).
[Crossref]
[PubMed]
A. V. Le and C. S. Won, “Key-point based stereo matching and its application to interpolations,” Multidimension. Syst. Signal Process. 28, 265–280 (2017).
[Crossref]
H.-G. Jeon, J.-Y. Lee, S. Im, H. Ha, and I. So Kweon, “Stereo matching with color and monochrome cameras in low-light conditions,” in “Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,” (2016), pp. 4086–4094.
Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 807–822 (2011).
[Crossref]
Y.-H. Kim, J. Koo, and S. Lee, “Adaptive descriptor-based robust stereo matching under radiometric changes,” Pattern Recognit. Lett. 78, 41–47 (2016).
[Crossref]
Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 807–822 (2011).
[Crossref]
J. Yang, Z. Gao, R. Chu, Y. Liu, and Y. Lin, “New stereo shooting evaluation metric based on stereoscopic distortion and subjective perception,” Opt. Rev. 22, 459–468 (2015).
[Crossref]
J. Yang, Z. Gao, R. Chu, Y. Liu, and Y. Lin, “New stereo shooting evaluation metric based on stereoscopic distortion and subjective perception,” Opt. Rev. 22, 459–468 (2015).
[Crossref]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision 60, 91–110 (2004).
[Crossref]
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in “2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (IEEE, 2015), pp. 2103–2112.
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
P. Pinggera, T. Breckon, and H. Bischof, “On cross-spectral stereo matching using dense gradient features,” in “Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,” (2012).
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013).
[Crossref]
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013).
[Crossref]
S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in “2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (IEEE, 2015), pp. 2103–2112.
H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 1582–1599 (2009).
[Crossref]
[PubMed]
D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47, 7–42 (2002).
[Crossref]
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
H.-G. Jeon, J.-Y. Lee, S. Im, H. Ha, and I. So Kweon, “Stereo matching with color and monochrome cameras in low-light conditions,” in “Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,” (2016), pp. 4086–4094.
S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in “2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (IEEE, 2015), pp. 2103–2112.
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013).
[Crossref]
[PubMed]
K. He, J. Sun, and X. Tang, “Guided image filtering,” in “European conference on computer vision,” (Springer, 2010), pp. 1–14.
D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47, 7–42 (2002).
[Crossref]
K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013).
[Crossref]
[PubMed]
K. He, J. Sun, and X. Tang, “Guided image filtering,” in “European conference on computer vision,” (Springer, 2010), pp. 1–14.
S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,” Int. J. Comput. Vision 35, 269–293 (1999).
[Crossref]
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
A. V. Le and C. S. Won, “Key-point based stereo matching and its application to interpolations,” Multidimension. Syst. Signal Process. 28, 265–280 (2017).
[Crossref]
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
J. Yang, Z. Gao, R. Chu, Y. Liu, and Y. Lin, “New stereo shooting evaluation metric based on stereoscopic distortion and subjective perception,” Opt. Rev. 22, 459–468 (2015).
[Crossref]
K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006).
[Crossref]
[PubMed]
J. Yang, H. Wang, Z. Ding, Z. Lv, W. Wei, and H. Song, “Local stereo matching based on support weight with motion flow for dynamic scene,” IEEE Access 4, 4840–4847 (2016).
[Crossref]
Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive normalized cross-correlation,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 807–822 (2011).
[Crossref]
H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 1582–1599 (2009).
[Crossref]
[PubMed]
K.-J. Yoon and I. S. Kweon, “Adaptive support-weight approach for correspondence search,” IEEE Trans. Pattern Anal. Mach. Intell. 28, 650–656 (2006).
[Crossref]
[PubMed]
A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz, “Fast cost-volume filtering for visual correspondence and beyond,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 504–511 (2013).
[Crossref]
K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 1397–1409 (2013).
[Crossref]
[PubMed]
D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vision 47, 7–42 (2002).
[Crossref]
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision 60, 91–110 (2004).
[Crossref]
S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-to-pixel stereo,” Int. J. Comput. Vision 35, 269–293 (1999).
[Crossref]
R. A. Hamzah, H. Ibrahim, and A. H. A. Hassan, “Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation,” J. Visual Commun. Image Represent. 42, 145–160 (2017).
[Crossref]
A. V. Le and C. S. Won, “Key-point based stereo matching and its application to interpolations,” Multidimension. Syst. Signal Process. 28, 265–280 (2017).
[Crossref]
J. Yang, Z. Gao, R. Chu, Y. Liu, and Y. Lin, “New stereo shooting evaluation metric based on stereoscopic distortion and subjective perception,” Opt. Rev. 22, 459–468 (2015).
[Crossref]
Y.-H. Kim, J. Koo, and S. Lee, “Adaptive descriptor-based robust stereo matching under radiometric changes,” Pattern Recognit. Lett. 78, 41–47 (2016).
[Crossref]
H.-G. Jeon, J.-Y. Lee, S. Im, H. Ha, and I. So Kweon, “Stereo matching with color and monochrome cameras in low-light conditions,” in “Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,” (2016), pp. 4086–4094.
S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn, “Dasc: Dense adaptive self-correlation descriptor for multi-modal and multi-spectral correspondence,” in “2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (IEEE, 2015), pp. 2103–2112.
P. Pinggera, T. Breckon, and H. Bischof, “On cross-spectral stereo matching using dense gradient features,” in “Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,” (2012).
D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl, N. Nešić, X. Wang, and P. Westling, “High-resolution stereo datasets with subpixel-accurate ground truth,” in “German Conference on Pattern Recognition,” (Springer, 2014), pp. 31–42.
H. Hirschmuller, “Accurate and efficient stereo processing by semi-global matching and mutual information,” in “2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),”, vol. 2 (IEEE, 2005), vol. 2, pp. 807–814.
K. He, J. Sun, and X. Tang, “Guided image filtering,” in “European conference on computer vision,” (Springer, 2010), pp. 1–14.