Abstract

In this paper, the infinite-length metallic bar is folded to a continuous omega-shaped resonator and then arranged as a bi-layer metamaterial, which presents a hybrid resonance and a Fabry–Perot-like cavity mode. The asymmetric transmission (AT) for linearly polarized light is powerfully enhanced at a near-infrared regime by strongly coupling the hybrid resonance to the cavity, with the maximum value of the high-efficiency AT effect reaching 0.8 at around 1364 nm. At this near-infrared band, such a high-efficiency AT effect has never been realized previously by a bi-layer metamaterial. More importantly, we demonstrate that our design is robust to the misalignments, which greatly decreases the difficulties in sample fabrications. Accordingly, the proposed omega-shaped metamaterial provides potential applications in designing polarization filters, polarization switches, and other nano-devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial

Yiqun Xu, Quanchao Shi, Zheng Zhu, and Jinhui Shi
Opt. Express 22(21) 25679-25688 (2014)

Dual-band asymmetric optical transmission of both linearly and circularly polarized waves using bilayer coupled complementary chiral metasurface

Wenbing Liu, Wei Wu, Lirong Huang, Yonghong Ling, Chunfa Ba, Shuang Li, Zenghui Chun, and Hanhui Li
Opt. Express 27(23) 33399-33411 (2019)

Enhanced asymmetric transmission due to Fabry-Perot-like cavity

Dao-Ya Liu, Min-Hua Li, Xiao-Min Zhai, Li-Fang Yao, and Jian-Feng Dong
Opt. Express 22(10) 11707-11712 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
    [Crossref] [PubMed]
  2. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  3. Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
    [Crossref] [PubMed]
  4. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
    [Crossref]
  5. Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
    [Crossref]
  6. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  7. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
    [Crossref]
  8. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  9. F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
  10. X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
    [Crossref] [PubMed]
  11. R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
    [Crossref] [PubMed]
  12. L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
    [Crossref] [PubMed]
  13. G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
    [Crossref]
  14. W. Fan, Y. Wang, R. Zheng, D. Liu, and J. Shi, “Broadband high efficiency asymmetric transmission of achiral metamaterials,” Opt. Express 23(15), 19535–19541 (2015).
    [Crossref] [PubMed]
  15. K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
    [Crossref]
  16. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
    [Crossref]
  17. J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, “Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection,” Opt. Lett. 39(23), 6683–6686 (2014).
    [Crossref] [PubMed]
  18. Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
    [Crossref] [PubMed]
  19. M. Kang, H. T. Wang, and W. Zhu, “Dual-band unidirectional circular polarizer with opposite handedness filtration using hybridized metamaterial,” Opt. Express 22(8), 9301–9306 (2014).
    [Crossref] [PubMed]
  20. Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
    [Crossref]
  21. Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
    [Crossref]
  22. D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
    [Crossref] [PubMed]
  23. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  24. J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
    [Crossref]
  25. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
    [Crossref]
  26. Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
    [Crossref]
  27. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
    [Crossref]
  28. K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
    [Crossref] [PubMed]
  29. M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
    [Crossref]
  30. Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
    [Crossref]
  31. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  32. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
    [Crossref] [PubMed]

2017 (4)

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
[Crossref] [PubMed]

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref] [PubMed]

2016 (3)

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

2015 (6)

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
[Crossref] [PubMed]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

W. Fan, Y. Wang, R. Zheng, D. Liu, and J. Shi, “Broadband high efficiency asymmetric transmission of achiral metamaterials,” Opt. Express 23(15), 19535–19541 (2015).
[Crossref] [PubMed]

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

2014 (8)

M. Kang, H. T. Wang, and W. Zhu, “Dual-band unidirectional circular polarizer with opposite handedness filtration using hybridized metamaterial,” Opt. Express 22(8), 9301–9306 (2014).
[Crossref] [PubMed]

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, “Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection,” Opt. Lett. 39(23), 6683–6686 (2014).
[Crossref] [PubMed]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

2013 (4)

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

2012 (1)

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

2011 (2)

M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref] [PubMed]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

2010 (2)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

2007 (2)

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Bai, R.

Bardou, N.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Bouchon, P.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Bozhevolnyi, S. I.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Cao, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, H.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, J.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref] [PubMed]

Chen, K.

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

Chen, Q.

Chen, S.

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Chen, S. Q.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Cheng, H.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Chiang, Y.-J.

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cong, L.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Cui, H.-X.

Cui, L.

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Deng, L.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Dereux, A.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Devaux, E.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Dong, J. F.

Dong, Z.

Dong, Z.-G.

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

Dupuis, C.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Ebbesen, T. W.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Economou, E. N.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Fan, W.

Fan, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Farsari, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Feng, Y.

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Feng Ma, H.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

González, M. U.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Gu, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Gu, X.

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Haïdar, R.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Han, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Huang, C.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Jaeck, J.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Ji, R.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Jiang, T.

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jin, R.

Jin, X. R.

Jun Cui, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Kafesaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kang, M.

Kenanakis, G.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Kim, I.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Kim, M.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Krenn, J. R.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Lee, Y. P.

Lévesque, Q.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Li, E.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Li, H.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Li, J.

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, “Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection,” Opt. Lett. 39(23), 6683–6686 (2014).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Li, J. X.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Li, M. H.

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Li, Y.

Li, Z.

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Li, Z. C.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Liu, D.

Liu, D. J.

Liu, H.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Liu, W.

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Liu, W. W.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Liu, X.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Liu, Y.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Liu, Z.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Liu, Z. C.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Lu, H.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Lu, W.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Luo, C.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Lv, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, X. L.

Makhsiyan, M.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Mao, P.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

-Moreno, L. M.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Pan, W. K.

Pardo, F.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Pelouard, J.-L.

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Radko, I. P.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rho, J.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Rodrigo, S. G.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Selimis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Shao, J.

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

Shi, J.

Shi, Q.

Singh, R.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Song, K.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Soukoulis, C. M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Tang, C.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Tang, D. F.

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

-Tejeira, F. L.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Tian, J.

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Tian, J. G.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Vamvakaki, M.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

-Vidal, F. J. G.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Wang, C.

Wang, H. T.

Wang, H.-T.

Wang, Q.

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Wang, S. W.

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Wang, Y.

Wang, Y.-H.

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

Wang, Z.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Wang, Z. H.

Weeber, J. C.

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Wei, Z.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Xiao, Z. Y.

Xie, B.

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Xie, B. Y.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Xie, H.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Xie, J.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Xomalis, A.

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Xu, N.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Xu, Y.

Yao, K.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Yen, T.-J.

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Yoon, G.

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Yu, P.

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

Yu, S.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Yu, X.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Yu, Y.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, C.

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Zhang, S.

Zhang, T.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

Zhang, W.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Zhang, X.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

J. Li, Y. Zhang, R. Jin, Q. Wang, Q. Chen, and Z. Dong, “Excitation of plasmon toroidal mode at optical frequencies by angle-resolved reflection,” Opt. Lett. 39(23), 6683–6686 (2014).
[Crossref] [PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y. Q.

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhao, J.

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Zhao, X.

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Zheng, R.

Zhou, L.

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhou, P.

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Zhu, B.

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

Zhu, M.-J.

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Zhu, W.

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhu, Z.

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

ACS Photonics (1)

G. Kenanakis, A. Xomalis, A. Selimis, M. Vamvakaki, M. Farsari, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, “Three-dimensional infrared metamaterial with asymmetric transmission,” ACS Photonics 2(2), 287–294 (2015).
[Crossref]

Adv. Opt. Mater. (1)

M. Kim, K. Yao, G. Yoon, I. Kim, Y. Liu, and J. Rho, “A broadband optical diode for linearly polarized light using symmetry-breaking metamaterials,” Adv. Opt. Mater. 5(19), 1700600 (2017).
[Crossref]

Appl. Phys. Lett. (6)

Z. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, Z. Liu, J. Li, and J. Tian, “Broadband diodelike asymmetric transmission of linearly polarized light in ultrathin hybrid metamaterial,” Appl. Phys. Lett. 105(20), 201103 (2014).
[Crossref]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97(26), 261113 (2010).
[Crossref]

Y.-J. Chiang and T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, and J.-L. Pelouard, “Plasmonic planar antenna for wideband and efficient linear polarization conversion,” Appl. Phys. Lett. 104(11), 111105 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical magnetic field enhancement via coupling magnetic plasmons to optical cavity modes,” IEEE Photonics Technol. Lett. 28(14), 1529–1531 (2016).
[Crossref]

J. Phys. D Appl. Phys. (2)

Y.-H. Wang, J. Shao, J. Li, M.-J. Zhu, J. Li, L. Zhou, and Z.-G. Dong, “Broadband asymmetric transmission by rotated bilayer cross-shaped metamaterials,” J. Phys. D Appl. Phys. 48(48), 485306 (2015).
[Crossref]

K. Song, Y. Liu, C. Luo, and X. Zhao, “High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial,” J. Phys. D Appl. Phys. 47(50), 505104 (2014).
[Crossref]

Laser Photonics Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Nanoscale (1)

R. Ji, S. W. Wang, X. Liu, and W. Lu, “Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities,” Nanoscale 8(15), 8189–8194 (2016).
[Crossref] [PubMed]

Nat. Phys. (1)

F. L. -Tejeira, S. G. Rodrigo, L. M. -Moreno, F. J. G. -Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).

Opt. Express (7)

X. Gu, R. Bai, C. Zhang, X. R. Jin, Y. Q. Zhang, S. Zhang, and Y. P. Lee, “Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling,” Opt. Express 25(10), 11778–11787 (2017).
[Crossref] [PubMed]

M. Kang, J. Chen, H.-X. Cui, Y. Li, and H.-T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref] [PubMed]

W. Fan, Y. Wang, R. Zheng, D. Liu, and J. Shi, “Broadband high efficiency asymmetric transmission of achiral metamaterials,” Opt. Express 23(15), 19535–19541 (2015).
[Crossref] [PubMed]

Z. Y. Xiao, D. J. Liu, X. L. Ma, and Z. H. Wang, “Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators,” Opt. Express 23(6), 7053–7061 (2015).
[Crossref] [PubMed]

D. F. Tang, C. Wang, W. K. Pan, M. H. Li, and J. F. Dong, “Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band,” Opt. Express 25(10), 11329–11339 (2017).
[Crossref] [PubMed]

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

M. Kang, H. T. Wang, and W. Zhu, “Dual-band unidirectional circular polarizer with opposite handedness filtration using hybridized metamaterial,” Opt. Express 22(8), 9301–9306 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B 85(19), 195131 (2012).
[Crossref]

Phys. Rev. Lett. (4)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Plasmonics (1)

Z. C. Li, S. Q. Chen, W. W. Liu, H. Cheng, Z. C. Liu, J. X. Li, P. Yu, B. Y. Xie, and J. G. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Sci. Rep. (2)

K. Chen, Y. Feng, L. Cui, J. Zhao, T. Jiang, and B. Zhu, “Dynamic control of asymmetric electromagnetic wave transmission by active chiral metamaterial,” Sci. Rep. 7, 42802 (2017).
[Crossref] [PubMed]

L. Zhang, P. Zhou, H. Chen, H. Lu, H. Xie, L. Zhang, E. Li, J. Xie, and L. Deng, “Ultrabroadband design for linear polarization conversion and asymmetric transmission crossing X- and K- Band,” Sci. Rep. 6(1), 33826 (2016).
[Crossref] [PubMed]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, “Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic diagram of bi-layer continuous metamaterial embedded in a silicon-oxide dielectric environment. (b) A perspective view of the unit cell. (c) and (d) The elevation and side views of the unit cell.
Fig. 2
Fig. 2 Simulated transmittances for bi-layer continuous omega-shaped metamaterial, when x- and y-polarized lights incident along (a) forward and (b) backward directions, respectively.
Fig. 3
Fig. 3 The calculated total transmittances for forward and backward propagation directions with (a) x- and (b) y-polarized incident lights, respectively. (c) AT effect for the designed bi-layer metamaterial. Blue solid and green bashed lines correspond to AT of x- and y-polarized lights, respectively.
Fig. 4
Fig. 4 Electric-field magnitude distributions at resonant wavelength for continuous omega-shaped metamaterial. (a) and (b) correspond to the x-polarized wave incident along the + z direction, (c) and (d) correspond to the y-polarized wave incident along the + z direction.
Fig. 5
Fig. 5 (a) Simulated transmittance when the continuous omega-shaped metamaterial is separated (not connected with each other) with a gap g = 60 nm. Inset: Schematic diagram of bi-layer uncontinuous omega-shaped metamaterial. (b) The corresponding AT parameter Δ x .
Fig. 6
Fig. 6 (a) The AT parameter as a function of cavity length d. (b) and (c) Electric vector distributions of the bi-layer omega-shaped metamaterial, corresponding to d = 70 nm.
Fig. 7
Fig. 7 (a) and (b) Schematic diagram of Fabry–Perot-like resonance based on the bi-layer omega-shaped metamaterial. Note the solid lines mean strong transmission/reflection processes, while the dotted lines mean weak ones. (c) and (d) the transmittance and reflectance for the bi-layer metamaterial, when x- and y-polarized lights incident along the + z direction.
Fig. 8
Fig. 8 Calculated AT parameter Δ x of the bilayer chiral metamaterial for different a, b, w, the misalignments δx, δy and the collision frequency γ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i ( r ,t)=( I x I y ) e i(kzwt)
E t ( r ,t)=( T x T y ) e i(kzwt)
T f =( T xx f T xy f T yx f T yy f )
T b =( T xx b T xy b T yx b T yy b ) = ( T xx f T yx f T xy f T yy f )
Δ x = t x f t x b =( t xx f + t yx f )( t xx b + t yx b ) = t xx f + t yx f t yy f t xy f = t yx f t xy f =- Δ y

Metrics