Abstract

A fully fibered microwave-optical source at 1.5 µm is studied experimentally. It is shown that the beat note between two orthogonally polarized modes of a distributed-feedback fiber laser can be efficiently stabilized using an optical phase-locked loop. The pump-power-induced birefringence serves as the actuator. Beat notes at 1 GHz and 10 GHz are successfully stabilized to a reference synthesizer, passing from the 3 kHz free-running linewidth to a stabilized sub-Hz linewidth, with a phase noise as low as -75 dBc/Hz at 100 Hz offset from the carrier. Such dual-frequency stabilized lasers could provide compact integrated components for RF and microwave photonics applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Beat note stabilization of a 10–60 GHz dual-polarization microlaser through optical down conversion

A. Rolland, M. Brunel, G. Loas, L. Frein, M. Vallet, and M. Alouini
Opt. Express 19(5) 4399-4404 (2011)

Stabilization of microwave signal generated by a dual-polarization DBR fiber laser via optical feedback

Yizhi Liang, Long Jin, Linghao Cheng, and Bai-Ou Guan
Opt. Express 22(24) 29356-29362 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A62 (2017).
    [Crossref]
  2. W. H. Loh and R. I. Laming, “1.55 µm phase-shifted distributed-feedback fiber laser,” Electron. Lett. 31(17), 1440–1442 (1995).
    [Crossref]
  3. J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
    [Crossref]
  4. E. Rønnekleiv, M. Ibsen, and G. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
    [Crossref]
  5. O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
    [Crossref] [PubMed]
  6. J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, “A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(16), 1729–1731 (2006).
    [Crossref]
  7. J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
    [Crossref]
  8. Q. Yuan, Y. Liang, L. Jin, L. Cheng, and B.-O. Guan, “Implementation of a widely tunable microwave signal generator based on dual-polarization fiber grating laser,” Appl. Opt. 54(4), 895–900 (2015).
    [Crossref] [PubMed]
  9. Y. Liang, L. Jin, L. Cheng, and B.-O. Guan, “Stabilization of microwave signal generated by a dual-polarization DBR fiber laser via optical feedback,” Opt. Express 22(24), 29356–29362 (2014).
    [Crossref] [PubMed]
  10. J. A. Keszenheimer, E. J. Balboni, and J. J. Zayhowski, “Phase locking of 1.32-µm microchip lasers through the use of pump-diode modulation,” Opt. Lett. 17(9), 649–651 (1992).
    [Crossref] [PubMed]
  11. M. Heurs, V. M. Quetschke, B. Willke, K. Danzmann, and I. Freitag, “Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique,” Opt. Lett. 29(18), 2148–2150 (2004).
    [Crossref] [PubMed]
  12. M. Brunel and M. Vallet, “Wavelength locking of CW and Q-switched Er3+ microchip lasers to acetylene absorption lines using pump-power modulation,” Opt. Express 15(4), 1612–1620 (2007).
    [Crossref] [PubMed]
  13. W. Guan and J. R. Marciante, “Pump-induced, dual-frequency switching in a short-cavity, ytterbium-doped fiber laser,” Opt. Express 15(23), 14979–14992 (2007).
    [Crossref] [PubMed]
  14. T. Erdogan and V. Mizrahi, “Characterization of UV induced birefringence in photosensitive Ge-doped silica optical fibers,” J. Opt. Soc. Am. B 11(10), 2100–2105 (1994).
    [Crossref]
  15. B.-O. Guan, Y. Zhang, L.-W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photonics Technol. Lett. 21(11), 727–729 (2009).
    [Crossref]
  16. Y.-N. Tan, L. Jin, L. Cheng, Z. Quan, M. Li, and B.-O. Guan, “Multi-octave tunable RF signal generation based on a dual-polarization fiber grating laser,” Opt. Express 20(7), 6961–6967 (2012).
    [Crossref] [PubMed]
  17. W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal mode polarization maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27(20), 4455–4459 (2009).
    [Crossref]
  18. S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
    [Crossref]

2017 (1)

2015 (1)

2014 (1)

2013 (1)

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

2012 (1)

2011 (1)

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

2009 (2)

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal mode polarization maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27(20), 4455–4459 (2009).
[Crossref]

B.-O. Guan, Y. Zhang, L.-W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photonics Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

2007 (2)

2006 (1)

J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, “A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(16), 1729–1731 (2006).
[Crossref]

2004 (1)

2001 (1)

2000 (1)

E. Rønnekleiv, M. Ibsen, and G. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

1998 (1)

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

1995 (1)

W. H. Loh and R. I. Laming, “1.55 µm phase-shifted distributed-feedback fiber laser,” Electron. Lett. 31(17), 1440–1442 (1995).
[Crossref]

1994 (1)

1992 (1)

Balboni, E. J.

Berendt, M. O.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Brunel, M.

Chen, D.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal mode polarization maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27(20), 4455–4459 (2009).
[Crossref]

Cheng, L.

Cowle, G.

E. Rønnekleiv, M. Ibsen, and G. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

Danzmann, K.

Dolfi, D.

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

Erdogan, T.

Fan, W.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Feng, Y.

Feng, Z.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Freitag, I.

Fu, S.

Guan, B.-O.

Guan, W.

Hadeler, O.

He, S.

Heurs, M.

Hubner, J.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Ibsen, M.

O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
[Crossref] [PubMed]

E. Rønnekleiv, M. Ibsen, and G. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

Jiang, M.

Jin, L.

Keszenheimer, J. A.

Kristensen, M.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Lai, Y. C.

J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, “A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(16), 1729–1731 (2006).
[Crossref]

Laming, R. I.

W. H. Loh and R. I. Laming, “1.55 µm phase-shifted distributed-feedback fiber laser,” Electron. Lett. 31(17), 1440–1442 (1995).
[Crossref]

Lauridsen, V. C.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Leng, J. S.

J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, “A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(16), 1729–1731 (2006).
[Crossref]

Li, C.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Li, M.

Liang, Y.

Liu, W.

Loh, W. H.

W. H. Loh and R. I. Laming, “1.55 µm phase-shifted distributed-feedback fiber laser,” Electron. Lett. 31(17), 1440–1442 (1995).
[Crossref]

Marciante, J. R.

Maxin, J.

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

Mizrahi, V.

Mo, S.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Molin, S.

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

Morvan, L.

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

Mugnier, A.

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

Norwood, R. A.

Palsdottir, B.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Peyghambarian, N.

Philipsen, J. L.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Pillet, G.

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

Povlsen, J. H.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Pureur, D.

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

Quan, Z.

Quetschke, V. M.

Rønnekleiv, E.

E. Rønnekleiv, M. Ibsen, and G. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

Shi, W.

Tam, H. Y.

B.-O. Guan, Y. Zhang, L.-W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photonics Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

Tan, Y.-N.

Vallet, M.

Varming, P.

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

Williams, J. A. R.

J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, “A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(16), 1729–1731 (2006).
[Crossref]

Willke, B.

Xu, S.

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A62 (2017).
[Crossref]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, C.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, T.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yang, Z.

S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber lasers,” J. Opt. Soc. Am. B 34(3), A49–A62 (2017).
[Crossref]

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

Yuan, Q.

Zayhowski, J. J.

Zervas, M. N.

Zhang, L.

Zhang, L.-W.

B.-O. Guan, Y. Zhang, L.-W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photonics Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

Zhang, W.

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, “A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(16), 1729–1731 (2006).
[Crossref]

Zhang, Y.

B.-O. Guan, Y. Zhang, L.-W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photonics Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

Zhu, X.

Appl. Opt. (2)

Electron. Lett. (3)

W. H. Loh and R. I. Laming, “1.55 µm phase-shifted distributed-feedback fiber laser,” Electron. Lett. 31(17), 1440–1442 (1995).
[Crossref]

J. L. Philipsen, M. O. Berendt, P. Varming, V. C. Lauridsen, J. H. Povlsen, J. Hubner, M. Kristensen, and B. Palsdottir, “Polarisation control of DFB fibre laser using UV-induced birefringence phase-shift,” Electron. Lett. 34(7), 678–679 (1998).
[Crossref]

J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur, and D. Dolfi, “Dual-frequency distributed feedback fibre laser for microwave signals generation,” Electron. Lett. 47(14), 479–480 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Rønnekleiv, M. Ibsen, and G. Cowle, “Polarization characteristics of fiber DFB lasers related to sensing applications,” IEEE J. Quantum Electron. 36(6), 656–664 (2000).
[Crossref]

IEEE Photonics J. (1)

S. Mo, Z. Feng, S. Xu, W. Zhang, D. Chen, T. Yang, W. Fan, C. Li, C. Yang, and Z. Yang, “Microwave signal generation from a dual-wavelength single-frequency highly Er3+/Yb3+ co-doped phosphate fiber laser,” IEEE Photonics J. 5(6), 5502306 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

B.-O. Guan, Y. Zhang, L.-W. Zhang, and H. Y. Tam, “Electrically tunable microwave generation using compact dual-polarization fiber laser,” IEEE Photonics Technol. Lett. 21(11), 727–729 (2009).
[Crossref]

J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, “A new method for microwave generation and data transmission using DFB laser based on fiber Bragg gratings,” IEEE Photonics Technol. Lett. 18(16), 1729–1731 (2006).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (4)

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical phase-locked loop (OPLL) experimental set-up. DFFL: dual-frequency fiber laser; WDM, pump-signal coupler; PC, polarization controller; LO, local oscillator.
Fig. 2
Fig. 2 Optical spectra of sample 1G. (a) Unpumped DFB transmission spectrum. Insert: zoom on the dual-mode structure (linear scale). (b) Laser spectrum showing the two frequencies with a 1 GHz (8 pm) difference; pump power 59 mW (130 mA).
Fig. 3
Fig. 3 DFFL beat note at 1 GHz. (a) Span 13.6 GHz, RBW 3 MHz, spurious harmonics due to detection electronics, pump power 114 mW (250 mA). (b) Span 200 kHz, RBW 2 kHz, sweep time 100 ms. (c) Pump-power induced tuning: from right to left 45 mW (100 mA), 94 mW (200 mA), 144 mW (300 mA). (d) Beat note vs pump current at different laser temperatures.
Fig. 4
Fig. 4 Locked beat note at 1 GHz. (a) Electrical spectrum (blue, single sweep; black average 10); Span 1 kHz, RBW 1 Hz, VBW 10 Hz, sweep 4.2 s. (b) Open-loop transfer function (red, gain; grey, phase). (c) Phase noise spectra (red, locked beat note; orange, LO). Pump power 92 mW (200 mA).
Fig. 5
Fig. 5 10 GHz beat note stabilization. (a) Optical spectrum. (b) Beat note at 10 GHz. (c) Phase noise spectra (red, 10 GHz stabilized beat note; orange, LO). Pump power 41 mW (160 mA).

Metrics