Abstract

A novel photonic approach for multi-format signal generation based on a frequency-tunable optoelectronic oscillator (OEO) is proposed using a dual-polarization quadrature phase shift-keying (DP-QPSK) modulator. The upper dual-parallel Mach-Zehnder modulator (DP-MZM) integrated in the DP-QPSK modulator is properly biased to serve as an equivalent phase modulator, which functions in conjunction with a phase-shifted fiber Bragg grating (PS-FBG) in the OEO loop as a high-Q microwave photonic band-pass filter. The lower DP-MZM in the DP-QPSK modulator injected by the oscillation signal functions as a frequency multiplier, a phase-coded microwave signal generator or an optical frequency comb generator, respectively, with different signal injection methods. An experiment is performed. When the lower DP-MZM serves as a frequency multiplier, tunable frequency-doubled and quadrupled microwave signals up to 40 GHz are generated without using an optical notch filter; and if it functions as a phase-coded microwave signal generator, fundamental and frequency-doubled binary phase-coded microwave signals are generated with a tunable frequency. Furthermore, tunable five-line optical frequency combs are also generated using the compact system without an external RF source. The performance of the generated signals is also investigated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation

Takahide Sakamoto, Tetsuya Kawanishi, and Masayuki Izutsu
Opt. Lett. 31(6) 811-813 (2006)

Triple band frequency generator based on an optoelectronic oscillator with low phase noise

Zenghui Chen, Jian Dai, Yue Zhou, Feifei Yin, Tian Zhang, Jianqiang Li, Yitang Dai, and Kun Xu
Opt. Express 25(17) 20749-20756 (2017)

Photonic generation of binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range

Yang Chen, Aijun Wen, Yan Chen, and Xiaohui Wu
Opt. Express 22(13) 15618-15625 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  3. A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
    [Crossref]
  4. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  5. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  6. R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
    [Crossref]
  7. S. Pan, Z. Tang, D. Zhu, D. Ben, and J. Yao, “Injection-locked fiber laser for tunable millimeter-wave generation,” Opt. Lett. 36(24), 4722–4724 (2011).
    [Crossref] [PubMed]
  8. L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated optical signals using an optical injection phase-lock loop,” J. Lightwave Technol. 21(2), 511–520 (2003).
    [Crossref]
  9. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
    [Crossref]
  10. J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
    [Crossref]
  11. P. Hedekvist, B. Olsson, and A. Wiberg, “Microwave harmonic frequency generation utilizing the properties of an optical phase modulator,” J. Lightwave Technol. 22(3), 882–886 (2004).
    [Crossref]
  12. Y. Chen, A. Wen, and L. Shang, “Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators,” Opt. Commun. 283(24), 4933–4941 (2010).
    [Crossref]
  13. H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
    [Crossref]
  14. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu, “Frequency sixupler for millimeter-wave over fiber systems,” Opt. Express 16(14), 10141–10151 (2008).
    [Crossref] [PubMed]
  15. H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
    [Crossref]
  16. X. S. Yao and L. Maleki, “Converting light into spectrally pure microwave oscillation,” Opt. Lett. 21(7), 483–485 (1996).
    [Crossref] [PubMed]
  17. S. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
    [Crossref]
  18. D. Zhu, S. Pan, and D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
    [Crossref]
  19. Y. Chen, W. Li, A. Wen, and J. Yao, “Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor,” IEEE Trans. Microw. Theory Tech. 61(9), 3479–3485 (2013).
    [Crossref]
  20. M. Cohen, “Pulse compression in radar systems,” in Principles of Modern Radar, J. Eaves and E. Reedy (Springer US, 1987)
  21. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  22. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
    [Crossref] [PubMed]
  23. A. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  24. Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
    [Crossref]
  25. W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
    [Crossref]
  26. X. Li, S. Zhao, S. Pan, Z. Zhu, K. Qu, and T. Lin, “Generation of a frequency-quadrupled phase-coded signal using optical carrier phase shifting and balanced detection,” Appl. Opt. 56(4), 1151–1156 (2017).
    [Crossref] [PubMed]
  27. W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” IEEE Trans. Microw. Theory Tech. 31(23), 3780–3786 (2013).
  28. S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  29. T. Sakamoto, “Optical Comb and Pulse Generation from CW Lightwave,” in International Topical Meeting on Microwave Photonics jointly held with the Asia-Pacific Microwave Photonics Conference, Singapore, pp. 81–84, 2011
    [Crossref]
  30. Y. Chen, S. Liu, and S. Pan, “An optically tunable frequency-multiplying optoelectronic oscillator through equivalent phase modulation,” in 2017 International Topical Meeting on Microwave Photonics, Beijing, China, WEP. 23, 2017.
    [Crossref]
  31. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
    [Crossref]

2017 (2)

2014 (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

2013 (5)

Y. Chen, W. Li, A. Wen, and J. Yao, “Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor,” IEEE Trans. Microw. Theory Tech. 61(9), 3479–3485 (2013).
[Crossref]

W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” IEEE Trans. Microw. Theory Tech. 31(23), 3780–3786 (2013).

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

2012 (2)

D. Zhu, S. Pan, and D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

2011 (3)

A. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

S. Pan, Z. Tang, D. Zhu, D. Ben, and J. Yao, “Injection-locked fiber laser for tunable millimeter-wave generation,” Opt. Lett. 36(24), 4722–4724 (2011).
[Crossref] [PubMed]

2010 (2)

Y. Chen, A. Wen, and L. Shang, “Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators,” Opt. Commun. 283(24), 4933–4941 (2010).
[Crossref]

S. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

2009 (2)

S. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (3)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (2)

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for the generation of millimeter waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

2004 (1)

2003 (1)

2002 (2)

1996 (1)

Ben, D.

D. Zhu, S. Pan, and D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[Crossref]

S. Pan, Z. Tang, D. Zhu, D. Ben, and J. Yao, “Injection-locked fiber laser for tunable millimeter-wave generation,” Opt. Lett. 36(24), 4722–4724 (2011).
[Crossref] [PubMed]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chang, G.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Chen, Y.

Y. Chen, W. Li, A. Wen, and J. Yao, “Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor,” IEEE Trans. Microw. Theory Tech. 61(9), 3479–3485 (2013).
[Crossref]

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

Y. Chen, A. Wen, and L. Shang, “Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators,” Opt. Commun. 283(24), 4933–4941 (2010).
[Crossref]

Y. Chen, S. Liu, and S. Pan, “An optically tunable frequency-multiplying optoelectronic oscillator through equivalent phase modulation,” in 2017 International Topical Meeting on Microwave Photonics, Beijing, China, WEP. 23, 2017.
[Crossref]

Chi, H.

Diddams, S.

Fice, M.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Hannover, D.

Hedekvist, P.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Hraimel, B.

Jia, Z.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Johansson, L. A.

Junker, M.

Kong, F.

W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” IEEE Trans. Microw. Theory Tech. 31(23), 3780–3786 (2013).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leaird, D. E.

Lealman, I.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Li, M.

W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, W.

W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” IEEE Trans. Microw. Theory Tech. 31(23), 3780–3786 (2013).

W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

Y. Chen, W. Li, A. Wen, and J. Yao, “Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor,” IEEE Trans. Microw. Theory Tech. 61(9), 3479–3485 (2013).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

Li, X.

Lin, T.

Liu, S.

Y. Chen, S. Liu, and S. Pan, “An optically tunable frequency-multiplying optoelectronic oscillator through equivalent phase modulation,” in 2017 International Topical Meeting on Microwave Photonics, Beijing, China, WEP. 23, 2017.
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Maleki, L.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Maxwell, G.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

McKinney, J. D.

Mohamed, M.

Moodie, D.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Naglic, L.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Olsson, B.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

X. Li, S. Zhao, S. Pan, Z. Zhu, K. Qu, and T. Lin, “Generation of a frequency-quadrupled phase-coded signal using optical carrier phase shifting and balanced detection,” Appl. Opt. 56(4), 1151–1156 (2017).
[Crossref] [PubMed]

D. Zhu, S. Pan, and D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[Crossref]

S. Pan, Z. Tang, D. Zhu, D. Ben, and J. Yao, “Injection-locked fiber laser for tunable millimeter-wave generation,” Opt. Lett. 36(24), 4722–4724 (2011).
[Crossref] [PubMed]

S. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

Y. Chen, S. Liu, and S. Pan, “An optically tunable frequency-multiplying optoelectronic oscillator through equivalent phase modulation,” in 2017 International Topical Meeting on Microwave Photonics, Beijing, China, WEP. 23, 2017.
[Crossref]

Pavlovic, L.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Ponnampalam, L.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Qu, K.

Renaud, C.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Robertson, M.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Rogers, D.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Sakamoto, T.

T. Sakamoto, “Optical Comb and Pulse Generation from CW Lightwave,” in International Topical Meeting on Microwave Photonics jointly held with the Asia-Pacific Microwave Photonics Conference, Singapore, pp. 81–84, 2011
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Schneider, T.

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Seeds, A.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

Seeds, A. J.

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shang, L.

Y. Chen, A. Wen, and L. Shang, “Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators,” Opt. Commun. 283(24), 4933–4941 (2010).
[Crossref]

Steed, R.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Tang, Z.

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Vidmar, M.

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

Wang, H.

W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

Wang, L.

W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

Wang, T.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Weiner, A.

A. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Weiner, A. M.

Wen, A.

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

Y. Chen, W. Li, A. Wen, and J. Yao, “Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor,” IEEE Trans. Microw. Theory Tech. 61(9), 3479–3485 (2013).
[Crossref]

Y. Chen, A. Wen, and L. Shang, “Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators,” Opt. Commun. 283(24), 4933–4941 (2010).
[Crossref]

Wiberg, A.

Wu, K.

Yao, J.

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” IEEE Trans. Microw. Theory Tech. 31(23), 3780–3786 (2013).

Y. Chen, W. Li, A. Wen, and J. Yao, “Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor,” IEEE Trans. Microw. Theory Tech. 61(9), 3479–3485 (2013).
[Crossref]

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

S. Pan, Z. Tang, D. Zhu, D. Ben, and J. Yao, “Injection-locked fiber laser for tunable millimeter-wave generation,” Opt. Lett. 36(24), 4722–4724 (2011).
[Crossref] [PubMed]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
[Crossref]

H. Chi and J. Yao, “Frequency quadrupling and upconversion in a radio over fiber link,” J. Lightwave Technol. 26(15), 2706–2711 (2008).
[Crossref]

Yao, J. P.

S. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

Yao, X. S.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Yu, J.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Zhang, X.

Zhao, S.

Zhu, D.

D. Zhu, S. Pan, and D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[Crossref]

S. Pan, Z. Tang, D. Zhu, D. Ben, and J. Yao, “Injection-locked fiber laser for tunable millimeter-wave generation,” Opt. Lett. 36(24), 4722–4724 (2011).
[Crossref] [PubMed]

Zhu, N.

W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

Zhu, Z.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Steed, L. Ponnampalam, M. Fice, C. Renaud, D. Rogers, D. Moodie, G. Maxwell, I. Lealman, M. Robertson, L. Pavlovic, L. Naglic, M. Vidmar, and A. Seeds, “Hybrid integrated optical phase-lock loops for photonic terahertz sources,” IEEE J. Sel. Top. Quantum Electron. 17(1), 210–217 (2011).
[Crossref]

IEEE Photon. J. (1)

W. Li, L. Wang, M. Li, H. Wang, and N. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J. 5(4), 5501507 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

D. Zhu, S. Pan, and D. Ben, “Tunable frequency-quadrupling dual-loop optoelectronic oscillator,” IEEE Photon. Technol. Lett. 24(3), 194–196 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photonics Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Y. Chen, A. Wen, and J. Yao, “Photonic generation of frequency tunable binary phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 25(23), 2319–2322 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (4)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech. 60(5), 1287–1296 (2012).
[Crossref]

W. Li, F. Kong, and J. Yao, “Arbitrary Microwave Waveform Generation Based on a Tunable Optoelectronic Oscillator,” IEEE Trans. Microw. Theory Tech. 31(23), 3780–3786 (2013).

Y. Chen, W. Li, A. Wen, and J. Yao, “Frequency-Multiplying Optoelectronic Oscillator With a Tunable Multiplication Factor,” IEEE Trans. Microw. Theory Tech. 61(9), 3479–3485 (2013).
[Crossref]

A. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

J. Lightwave Technol. (7)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Commun. (2)

A. Weiner, “Ultrafast optical pulse shaping: A tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Y. Chen, A. Wen, and L. Shang, “Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach–Zehnder modulators,” Opt. Commun. 283(24), 4933–4941 (2010).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Other (3)

T. Sakamoto, “Optical Comb and Pulse Generation from CW Lightwave,” in International Topical Meeting on Microwave Photonics jointly held with the Asia-Pacific Microwave Photonics Conference, Singapore, pp. 81–84, 2011
[Crossref]

Y. Chen, S. Liu, and S. Pan, “An optically tunable frequency-multiplying optoelectronic oscillator through equivalent phase modulation,” in 2017 International Topical Meeting on Microwave Photonics, Beijing, China, WEP. 23, 2017.
[Crossref]

M. Cohen, “Pulse compression in radar systems,” in Principles of Modern Radar, J. Eaves and E. Reedy (Springer US, 1987)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of the proposed OEO based multi-format signal generation approach. TLS, tunable laser source; DP-MZM, dual-parallel Mach-Zehnder modulator; PC, polarization controller; PBS, polarization beam splitter; EDFA, erbium-doped fiber amplifier; SMF, single-mode fiber; OC, optical circulator; PD, photodetector; PS-FBG, phase-shifted fiber Bragg grating; EA, electrical amplifier; EC, electrical coupler; PPG, pulse pattern generator.
Fig. 2
Fig. 2 Principle of the generation process of (a) frequency-doubled and (b) quadrupled microwave signals.
Fig. 3
Fig. 3 Characteristics of the Bessel function of the first kind.
Fig. 4
Fig. 4 (a) Measured frequency response of the tunable MWP-BPF. (b) Zoom-in view of the frequency response when the central frequency is at 8.376 GHz. The inset in (a) shows the reflection spectrum of the PS-FBG and an optical carrier located on it.
Fig. 5
Fig. 5 Electrical spectra of the generated oscillation signals in the OEO loop with the frequency tuned from 7.5 GHz to 12.7 GHz.
Fig. 6
Fig. 6 Electrical spectra of the generated (a) frequency-doubled and (b) frequency-quadrupled microwave signals. The insets are the corresponding optical spectra at the input of EDFA2.
Fig. 7
Fig. 7 Phase-noise performance for the fundamental (8.50 GHz), frequency-doubled (17.00 GHz) and frequency-quadrupled (34.00 GHz) microwave signals.
Fig. 8
Fig. 8 Setup for phase-coded microwave signal measurement. FD, frequency divider.
Fig. 9
Fig. 9 (a) Generated 8.50 GHz phase-coded microwave signal, (b) recovered phase information from (a).
Fig. 10
Fig. 10 (a) Generated 12.66 GHz phase-coded microwave signal, (b) recovered phase information from (a).
Fig. 11
Fig. 11 Autocorrelation of the generated 64-bit phase-coded microwave signal with a carrier frequency at (a) 8.50 GHz, (b) 12.66 GHz. The insets are the zoom-in views of the autocorrelation peaks.
Fig. 12
Fig. 12 (a) Generated 17.00 GHz phase-coded microwave signal, (b) recovered phase information from (a), (c) Autocorrelation of the generated 64-bit phase-coded microwave signal with a carrier frequency at 17.00 GHz.
Fig. 13
Fig. 13 Simulated five-line optical frequency comb with different working points. (a) δ equals to 0.7945, (b) δ equals to 2.6299. (c) Simulated seven-line optical frequency comb.
Fig. 14
Fig. 14 Generated optical frequency comb with a frequency spacing of 11.05 GHz. The inset is the generated optical frequency comb with a frequency spacing of 12.54 GHz.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( t )= E 1 cos( π V 1 cos( ω s t ) 2 V π )exp( j ω c t ) + E 1 cos( π( V 1 cos( ω s t ) V π ) 2 V π )exp( j ω c t+j π 2 ) = E 1 [ cos( γcos( ω s t ) )+jsin( γcos( ω s t ) ) ]exp( j ω c t ) = E 1 exp( j ω c t+jγcos( ω s t ) ),
E doubled ( t )= E 2 cos( π V b 2 V π )exp( j ω c t+jπ )+ E 2 cos( π( V 2 cos( ω s t ) V π ) 2 V π )exp( j ω c t ) =[ sin( δcos( ω s t ) )cos( ξ ) ] E 2 exp( j ω c t ) =[ 2 n=1 ( 1 ) n J 2n1 ( δ ) cos( ( 2n1 ) ω s t )cos( ξ ) ] E 2 exp( j ω c t ),
E doubled ( t )2 E 2 J 1 ( δ )cos( ω s t )exp( j ω c t ),
i doubled ( t )=R | E doubled ( t ) | 2 =R E doubled ( t ) E doubled * ( t ) =4R E 2 2 J 1 2 ( δ ) cos 2 ( ω s t ) =2R E 2 2 J 1 2 ( δ )+2R E 2 2 J 1 2 ( δ )cos( 2 ω s t ),
E qudrupled ( t )= E 2 cos( π V b 2 V π )exp( j ω c t+jπ )+ E 2 cos( π V 2 cos( ω s t ) 2 V π )exp( j ω c t ) =[ cos( δcos( ω s t ) )cos( ξ ) ] E 2 exp( j ω c t ) =[ J 0 ( δ )+2 n=1 ( 1 ) n J 2n ( δ ) cos( 2n ω s t )cos( ξ ) ] E 2 exp( j ω c t ).
E quadrupled ( t )2 E 2 J 2 ( δ )cos( 2 ω s t )exp( j ω c t ).
i quadrupled ( t )=R | E quadrupled ( t ) | 2 =R E quadrupled ( t ) E quadrupled * ( t ) =4R E 2 2 J 2 2 ( δ ) cos 2 ( 2 ω s t ) =2R E 2 2 J 2 2 ( δ )+2R E 2 2 J 2 2 ( δ )cos( 4 ω s t ),
E coding ( t )= E 2 cos( π( V s s( t ) V DC1 ) 2 V π )exp( j ω c t+jφ ) + E 2 cos( π( V 2 cos( ω s t ) V DC2 ) 2 V π )exp( j ω c t ) =[ cos( γs( t ) θ 1 )exp( jφ )+cos( κcos( ω s t ) θ 2 ) ] E 2 exp( j ω c t ),
i coding ( t )=R | E coding ( t ) | 2 =R E coding ( t ) E coding * ( t ) =R E 2 2 cos 2 ( γs( t ) θ 1 )+R E 2 2 cos 2 ( κcos( ω s t ) θ 2 ) +2R E 2 2 cosφcos( γs( t ) θ 1 )cos( κcos( ω s t ) θ 2 ) =R E 2 2 cos 2 ( γs( t ) θ 1 )+ 1 2 R E 2 2 + 1 2 R E 2 2 cos( 2κcos( ω s t )2 θ 2 ) +2R E 2 2 cosφcos( γs( t ) θ 1 )cos( κcos( ω s t ) θ 2 ).
i fundamental ( t )= 1 2 R E 2 2 +R E 2 2 sin 2 ( γs( t ) ) 1 2 R E 2 2 cos( 2κcos( ω s t ) ) +2R E 2 2 cosφsin( γs( t ) )sin( κcos( ω s t ) ) R E 2 2 [ 1 2 1 2 J 0 ( 2κ ) ]+R E 2 2 sin 2 ( γs( t ) )+R E 2 2 J 2 ( 2κ )cos( 2 ω s t ) +2R E 2 2 κcosφsin( γs( t ) )cos( ω s t ).
i fundamental ( t )=2R E 2 2 κsin( 0.5πs( t ) )cos( ω s t )={ 2R E 2 2 κcos( ω s t ) 2R E 2 2 κcos( ω s t+π ) s( t )=1 s( t )=1.
i doubled ( t )= 1 2 R E 2 2 +R E 2 2 sin 2 ( γs( t ) )+ 1 2 R E 2 2 cos( 2κcos( ω s t ) ) +2R E 2 2 cos( φ )sin( γs( t ) )cos( κcos( ω s t ) ) R E 2 2 [ 1 2 + 1 2 J 0 ( 2κ ) ]+R E 2 2 sin 2 ( γs( t ) )+2R E 2 2 J 0 ( κ )cos( φ )sin( γs( t ) ) R E 2 2 [ J 2 ( 2κ )+4 J 2 ( κ )cos( φ )sin( γs( t ) ) ]cos( 2 ω s t ).
i doubled ( t )=4R E 2 2 J 2 ( κ )sin( 0.5πs( t ) )cos( 2 ω s t )={ 4R E 2 2 J 2 ( κ )cos( 2 ω s t+π ) 4R E 2 2 J 2 ( κ )cos( 2 ω s t ) s( t )=1 s( t )=1.
E comb ( t )= E 2 cos( π V b 2 V π )exp( j ω c t )+ E 2 cos( π( V 2 cos( ω s t ) V Bias ) 2 V π )exp( j ω c t ) = E 2 { cos( ξ )+cosΘcos( δcos( ω s t ) )+sinΘsin( δcos( ω s t ) ) }exp( j ω c t ) E 2 { cos( ξ )+cosΘ J 0 ( δ )+ [ 2sinΘ J 1 ( δ )cos( ω s t )2cosΘ J 2 ( δ )cos( 2 ω s t ) 2sinΘ J 3 ( δ )cos( 3 ω s t )+2cosΘ J 4 ( δ )cos( 4 ω s t ) ] }exp( j ω c t ),
cos( ξ )+cosΘ J 0 ( δ )=sinΘ J 1 ( δ )=cosΘ J 2 ( δ ).

Metrics