Abstract

Optical phased arrays (OPAs) are important as they allow beam steering and scanning with no moving parts. As their channel count increases, the complexity of control and calibration becomes challenging. We propose an architecture and algorithm that provide rapid on-chip calibration and are scalable to arbitrary channel counts with significantly reduced chip area and reduced overall complexity compared to previously proposed approaches. The optimized phase shifter tuning algorithm – Deterministic Stochastic Gradient Descent (DSGD) - rapidly converges to the optimal state speeding up the digital-to-analog converter based control of large channel count OPAs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sparse aperiodic arrays for optical beam forming and LIDAR

Tin Komljenovic, Roger Helkey, Larry Coldren, and John E. Bowers
Opt. Express 25(3) 2511-2528 (2017)

Nanophotonic projection system

Firooz Aflatouni, Behrooz Abiri, Angad Rekhi, and Ali Hajimiri
Opt. Express 23(16) 21012-21022 (2015)

Review of numerical optimization techniques for meta-device design [Invited]

Sawyer D. Campbell, David Sell, Ronald P. Jenkins, Eric B. Whiting, Jonathan A. Fan, and Douglas H. Werner
Opt. Mater. Express 9(4) 1842-1863 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
    [Crossref] [PubMed]
  2. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  3. K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulators,” IEEE J. Lightwave Technol. 29(23), 3500–3505 (2011).
    [Crossref]
  4. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett. 37(20), 4257–4259 (2012).
    [Crossref] [PubMed]
  5. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
    [Crossref] [PubMed]
  6. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
    [Crossref] [PubMed]
  7. J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23(5), 5861–5874 (2015).
    [Crossref] [PubMed]
  8. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref] [PubMed]
  9. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic projection system,” Opt. Express 23(16), 21012–21022 (2015).
    [Crossref] [PubMed]
  10. H. Nikkhah, K. Van Acoleyen, and R. Baets, “Beam steering for wireless optical links based on an optical phased array in silicon,” Ann. Telecommun. 68(1–2), 57–62 (2013).
    [Crossref]
  11. J. Sun, E. Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett. 39(2), 367–370 (2014).
    [Crossref] [PubMed]
  12. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  13. J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).
  14. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
    [Crossref] [PubMed]
  15. W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
    [Crossref]
  16. K. Sayyah, O. Efimov, P. Patterson, J. Schaffner, C. White, J.-F. Seurin, G. Xu, and A. Miglo, “Two-dimensional pseudo-random optical phased array based on tandem optical injection locking of vertical cavity surface emitting lasers,” Opt. Express 23(15), 19405–19416 (2015).
    [Crossref] [PubMed]
  17. D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
    [Crossref]
  18. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, and J. E. Bowers, “Free-space beam steering using silicon waveguide surface gratings,” in IEEE Photonic Society 24th Annual Meeting, Arlington, VA (2011), pp. 547–548.
    [Crossref]
  19. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  20. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
    [Crossref] [PubMed]
  21. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  22. T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express 25(3), 2511–2528 (2017).
    [Crossref]
  23. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
    [Crossref] [PubMed]
  24. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks IV (1995), pp. 1942–1948.
    [Crossref]
  25. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  26. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
    [Crossref] [PubMed]

2017 (3)

2016 (1)

2015 (4)

2014 (4)

2013 (3)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

H. Nikkhah, K. Van Acoleyen, and R. Baets, “Beam steering for wireless optical links based on an optical phased array in silicon,” Ann. Telecommun. 68(1–2), 57–62 (2013).
[Crossref]

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

2012 (1)

2011 (3)

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulators,” IEEE J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

2010 (1)

2009 (1)

1997 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1994 (1)

Abediasl, H.

Abiri, B.

Aflatouni, F.

Althouse, C.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

Ambrosius, H. P. M. M.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

Bachmann, M.

Baets, R.

H. Nikkhah, K. Van Acoleyen, and R. Baets, “Beam steering for wireless optical links based on an optical phased array in silicon,” Ann. Telecommun. 68(1–2), 57–62 (2013).
[Crossref]

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulators,” IEEE J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
[Crossref] [PubMed]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref] [PubMed]

Besse, P. A.

Binetti, P. R. A.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

Bogaerts, W.

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulators,” IEEE J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref] [PubMed]

Bovington, J. T.

Bowers, J. E.

Byrd, M. J.

Carhart, G. W.

Chen, R. T.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Coldren, L.

Coldren, L. A.

Cole, D. B.

Coolbaugh, D.

Covey, J.

Davenport, M. L.

Doylend, J. K.

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks IV (1995), pp. 1942–1948.
[Crossref]

Efimov, O.

Feshali, A.

Guo, W.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

Hajimiri, A.

Hashemi, H.

Heck, J.

Heck, M. J. R.

Helkey, R.

Hosseini, A.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Hosseini, E.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Houdré, R.

Hulme, J. C.

Hutchison, D. N.

Jágerská, J.

Johansson, L. A.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks IV (1995), pp. 1942–1948.
[Crossref]

Kim, W.

Komljenovic, T.

Komorowska, K.

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulators,” IEEE J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

Kumar, R.

Kwong, D.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Le Thomas, N.

Leake, G.

Li, N.

Masanovic, M. L.

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

Melchior, H.

Miglo, A.

Moresco, M.

Nikkhah, H.

H. Nikkhah, K. Van Acoleyen, and R. Baets, “Beam steering for wireless optical links based on an optical phased array in silicon,” Ann. Telecommun. 68(1–2), 57–62 (2013).
[Crossref]

Patterson, P.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Peters, J. D.

Phare, C. T.

Poulton, C. V.

Raval, M.

Rekhi, A.

Ricklin, J. C.

Rogier, H.

Rong, H.

Sayyah, K.

Schaffner, J.

Seurin, J.-F.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Su, Z.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

Subbaraman, H.

Sun, J.

Timurdogan, E.

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Van Acoleyen, K.

H. Nikkhah, K. Van Acoleyen, and R. Baets, “Beam steering for wireless optical links based on an optical phased array in silicon,” Ann. Telecommun. 68(1–2), 57–62 (2013).
[Crossref]

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulators,” IEEE J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
[Crossref] [PubMed]

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref] [PubMed]

Vermeulen, D.

Vorontsov, M. A.

Watts, M. R.

White, C.

Xu, G.

Xu, X.

Yaacobi, A.

Zhang, Y.

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

Ann. Telecommun. (1)

H. Nikkhah, K. Van Acoleyen, and R. Baets, “Beam steering for wireless optical links based on an optical phased array in silicon,” Ann. Telecommun. 68(1–2), 57–62 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. Kwong, A. Hosseini, Y. Zhang, and R. T. Chen, “1× 12 unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane,” Appl. Phys. Lett. 99(5), 051104 (2011).
[Crossref]

IEEE J. Lightwave Technol. (1)

K. Van Acoleyen, K. Komorowska, W. Bogaerts, and R. Baets, “One-dimensional off-chip beam steering and shaping using optical phased arrays on silicon-on-insulators,” IEEE J. Lightwave Technol. 29(23), 3500–3505 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

W. Guo, P. R. A. Binetti, C. Althouse, M. L. Masanovic, H. P. M. M. Ambrosius, L. A. Johansson, and L. A. Coldren, “Two-Dimensional Optical Beam Steering With InP-Based Photonic Integrated Circuits,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100212 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8201115 (2014).

J. Lightwave Technol. (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (8)

K. Van Acoleyen, W. Bogaerts, J. Jágerská, N. Le Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Opt. Lett. 34(9), 1477–1479 (2009).
[Crossref] [PubMed]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, M. L. Davenport, L. A. Coldren, and J. E. Bowers, “Hybrid III/V silicon photonic source with integrated 1D free-space beam steering,” Opt. Lett. 37(20), 4257–4259 (2012).
[Crossref] [PubMed]

D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39(4), 941–944 (2014).
[Crossref] [PubMed]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39(15), 4575–4578 (2014).
[Crossref] [PubMed]

J. Sun, E. Hosseini, A. Yaacobi, D. B. Cole, G. Leake, D. Coolbaugh, and M. R. Watts, “Two-dimensional apodized silicon photonic phased arrays,” Opt. Lett. 39(2), 367–370 (2014).
[Crossref] [PubMed]

M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
[Crossref] [PubMed]

C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42(1), 21–24 (2017).
[Crossref] [PubMed]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

Optica (1)

Other (2)

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE International Conference on Neural Networks IV (1995), pp. 1942–1948.
[Crossref]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, and J. E. Bowers, “Free-space beam steering using silicon waveguide surface gratings,” in IEEE Photonic Society 24th Annual Meeting, Arlington, VA (2011), pp. 547–548.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical phase array (OPA) as studied comprises of a star coupler (splitting the input into N waveguides), N phase shifters and N emitters.
Fig. 2
Fig. 2 Fitness solution space for 32-channel OPA using 6-bit DACs as two channels are swept (channel 15 and 16) for two different fitness functions and aligned or randomized phases of the remaining channels. See text for details.
Fig. 3
Fig. 3 Pseudo-code for the deterministic part of the DSGD algorithm. The reduced set of DAC points (DAC_subset) is usually 2-4 most significant bits of the DAC resulting with 4-16 evaluations for channel before proceeding with stochastic algorithm. DAC_subset ⊂ DAC_states, where DAC_states is the full DAC range. Emitter_array are controls of individual emitters arranged as an array; one can think of it as an array that stores DAC states or voltages for pointing the beam at a certain direction and is the array that is being optimized.
Fig. 4
Fig. 4 Convergence of the three considered algorithms. Note that the x-axis is plotted using a logarithmic scale. For the DSGD, we show the point in which the algorithm transitions from deterministic to stochastic part.
Fig. 5
Fig. 5 Comparison between final results for the three studied algorithms. The top row shows the far-field patterns, while the bottom row shows the phases on the individual phase shifters. Some key parameters are summarized in Table 1.
Fig. 6
Fig. 6 Synthesized far-field patterns at (a) 0° (b) 10° (c) 15° and (d) 35°. The convergence of the fitness function is shown in (e). The speed of convergence is very similar between different steering angles, but it is interesting to see that they converge to a different value. The reason is the grating lobe that reduces the power in the main lobe once it is steered past ~13.9°. The initial fitness also varies, but that is dependent on the initial randomization of the phases.
Fig. 7
Fig. 7 Proposed on-chip calibration and control of high-channel count OPAs. Larger number of waveguides are coupled to M:1 MMI whose output is coupled through 1:3 MMIs directly to detectors B or through a 1:2 MMI to a detectors A. Details of the operation are in the text.
Fig. 8
Fig. 8 Imaging properties of a 30 µm wide. The number of images increases at shorter lengths which is the optimal behavior for the M:1 MMI as envisioned in Fig. 8. The table on the right shows the number of peaks and pitch at given length corresponding to the vertical red lines that serve as a guide to the eye. All dimensions are in µm.
Fig. 9
Fig. 9 (a) M:1 MMI for control of 1.25 µm pitch OPA. There are in total 40 waveguides in 50 µm wide MMI. (b) Around ~89% of power can be coupled by using tapers at the input and output. (c) The variation in absolute phase between waveguides increases for shorter MMIs (smaller pitch), but is something that is straightforward to include in the control electronics.
Fig. 10
Fig. 10 Pseudo-code for on-chip calibration and tuning. For details see text.

Tables (1)

Tables Icon

Table 1 Comparison between the algorithms used to control the OPA

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

No . states = 2 N B

Metrics