Abstract

Accurate quantitative temperature measurements are difficult to achieve using focal-plane array sensors. This is due to reflections inside the instrument and the difficulty of calibrating a matrix of pixels as identical radiation thermometers. Size-of-source effect (SSE), which is the dependence of an infrared temperature measurement on the area surrounding the target area, is a major contributor to this problem and cannot be reduced using glare stops. Measurements are affected by power received from outside the field-of-view (FOV), leading to increased measurement uncertainty. In this work, we present a micromechanical systems (MEMS) mirror based scanning thermal imaging camera with reduced measurement uncertainty compared to focal-plane array based systems. We demonstrate our flexible imaging approach using a Si avalanche photodiode (APD), which utilises high internal gain to enable the measurement of lower target temperatures with an effective wavelength of 1 µm and compare results with a Si photodiode. We compare measurements from our APD thermal imaging instrument against a commercial bolometer based focal-plane array camera. Our scanning approach results in a reduction in SSE related temperature error by 66 °C for the measurement of a spatially uniform 800 °C target when the target aperture diameter is increased from 10 to 20 mm. We also find that our APD instrument is capable of measuring target temperatures below 700 °C, over these near infrared wavelengths, with D* related measurement uncertainty of ± 0.5 °C.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative traceable temperature measurement using novel thermal imaging camera

Matthew J. Hobbs, Chengxi Zhu, Matthew P. Grainger, Chee Hing Tan, and Jon R. Willmott
Opt. Express 26(19) 24904-24916 (2018)

Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor

Cristiano Niclass, Kota Ito, Mineki Soga, Hiroyuki Matsubara, Isao Aoyagi, Satoru Kato, and Manabu Kagami
Opt. Express 20(11) 11863-11881 (2012)

Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning

Ming-Jie Sun, Matthew P. Edgar, David B. Phillips, Graham M. Gibson, and Miles J. Padgett
Opt. Express 24(10) 10476-10485 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
    [Crossref]
  2. P. Saunders, Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry (SPIE Ppress, 2007).
  3. H. W. Yoon and G. P. Eppeldauer, “Measurement of thermal radiation using regular glass optics and short-wave infrared detectors,” Opt. Express 16(2), 937–949 (2008).
    [Crossref] [PubMed]
  4. J. Spannar, P. Wide, and B. Sohlberg, “A method for measuring strip temperature in the steel industry,” IEEE Trans. Instrum. Meas. 51(6), 1240–1245 (2002).
    [Crossref]
  5. F. J. Rodriguez, F. J. Meca, J. A. Jimenez, and E. J. Bueno, “Monitoring and quality improvement of pharmaceutical glass container’s manufacturing process,” IEEE Trans. Instrum. Meas. 57(3), 584–590 (2008).
    [Crossref]
  6. A. Bendada, K. Cole, M. Lamontagne, and Y. Simard, “Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing,” Infrared Phys. Technol. 45(1), 59–68 (2004).
    [Crossref]
  7. Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
    [Crossref]
  8. R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
    [Crossref]
  9. J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
    [Crossref]
  10. G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
    [Crossref]
  11. H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
    [Crossref]
  12. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  13. M.-J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24(10), 10476–10485 (2016).
    [Crossref] [PubMed]
  14. R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
    [Crossref]
  15. L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
    [Crossref]
  16. W. Aenchbacher and T. Kurzweg, “Single-pixel, MEMS scanning mirror camera,” in IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 849–850.
    [Crossref]
  17. R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
    [Crossref]
  18. V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications,” Proc. SPIE 10191, 101910N (2017).
    [Crossref]
  19. M. Hobbs, C. Tan, and J. Willmott, “Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry,” J. Instrum. 8(3), P03016 (2013).
    [Crossref]
  20. G. R. Peacock, “A review of non-contact process temperature measurements in steel manufacturing,” Proc. SPIE 3700, 171–189 (1999).
    [Crossref]
  21. L. Chen, H. Gao, Y. Zhao, Y. Yu, and D. Wang, “Temperature error in casting radiation thermometry caused by emissivity error and measurement wavelength,” in ICIEA2008:3rd IEEE Conference on Industrial Electronics and Applications (IEEE, 2008), pp. 1047–1049.
  22. Hamamatsu Photonics, “Si photodiodes - S1087/S1133 series,” http://www.hamamatsu.com/resources/pdf/ssd/s1087_etc_kspd1039e.pdf . Last Accessed: August, 2017.
  23. Hamamatsu Photonics, “Si APD - S9251/S12092 series,” http://www.hamamatsu.com/resources/pdf/ssd/s9251_etc_kapd1013e.pdf . Last Accessed: August, 2017.
  24. J. Hahn and C. Rhee, “Interpolation equation for the calibration of infrared pyrometers,” Metrologia 31(1), 27–32 (1994).
    [Crossref]
  25. J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
    [Crossref]
  26. P. Saunders, “Uncertainty Arising from the Use of the Mean Effective Wavelength in Realizing ITS-90,” in AIP Conference Proceedings (AIP, 2003), pp. 639–644.
  27. A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
    [Crossref]

2017 (2)

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

2016 (1)

2015 (1)

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

2013 (1)

M. Hobbs, C. Tan, and J. Willmott, “Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry,” J. Instrum. 8(3), P03016 (2013).
[Crossref]

2012 (2)

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

2011 (2)

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

2009 (1)

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

2008 (4)

H. W. Yoon and G. P. Eppeldauer, “Measurement of thermal radiation using regular glass optics and short-wave infrared detectors,” Opt. Express 16(2), 937–949 (2008).
[Crossref] [PubMed]

F. J. Rodriguez, F. J. Meca, J. A. Jimenez, and E. J. Bueno, “Monitoring and quality improvement of pharmaceutical glass container’s manufacturing process,” IEEE Trans. Instrum. Meas. 57(3), 584–590 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

2004 (1)

A. Bendada, K. Cole, M. Lamontagne, and Y. Simard, “Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing,” Infrared Phys. Technol. 45(1), 59–68 (2004).
[Crossref]

2002 (1)

J. Spannar, P. Wide, and B. Sohlberg, “A method for measuring strip temperature in the steel industry,” IEEE Trans. Instrum. Meas. 51(6), 1240–1245 (2002).
[Crossref]

1999 (1)

G. R. Peacock, “A review of non-contact process temperature measurements in steel manufacturing,” Proc. SPIE 3700, 171–189 (1999).
[Crossref]

1994 (1)

J. Hahn and C. Rhee, “Interpolation equation for the calibration of infrared pyrometers,” Metrologia 31(1), 27–32 (1994).
[Crossref]

1988 (1)

J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
[Crossref]

1974 (1)

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
[Crossref]

Bai, X.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Baraniuk, R. G.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Bendada, A.

A. Bendada, K. Cole, M. Lamontagne, and Y. Simard, “Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing,” Infrared Phys. Technol. 45(1), 59–68 (2004).
[Crossref]

Bezemer, J.

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
[Crossref]

Budzier, H.

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

Bueno, E. J.

F. J. Rodriguez, F. J. Meca, J. A. Jimenez, and E. J. Bueno, “Monitoring and quality improvement of pharmaceutical glass container’s manufacturing process,” IEEE Trans. Instrum. Meas. 57(3), 584–590 (2008).
[Crossref]

Cheng, S.

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

Cole, K.

A. Bendada, K. Cole, M. Lamontagne, and Y. Simard, “Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing,” Infrared Phys. Technol. 45(1), 59–68 (2004).
[Crossref]

Dammann, J. F.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Davenport, M. A.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Dixon, J.

J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
[Crossref]

Duarte, M. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Edgar, M. P.

Envall, J.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

Eppeldauer, G. P.

Garcia, D. F.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

Gerlach, G.

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

Gibson, G. M.

Giza, M. M.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Granda, J. C.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

Grgic, G.

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

Hahn, J.

J. Hahn and C. Rhee, “Interpolation equation for the calibration of infrared pyrometers,” Metrologia 31(1), 27–32 (1994).
[Crossref]

Hanssen, L.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

He, Q.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Hobbs, M.

M. Hobbs, C. Tan, and J. Willmott, “Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry,” J. Instrum. 8(3), P03016 (2013).
[Crossref]

Hu, F.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Jimenez, J. A.

F. J. Rodriguez, F. J. Meca, J. A. Jimenez, and E. J. Bueno, “Monitoring and quality improvement of pharmaceutical glass container’s manufacturing process,” IEEE Trans. Instrum. Meas. 57(3), 584–590 (2008).
[Crossref]

Kasturi, A.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lamontagne, M.

A. Bendada, K. Cole, M. Lamontagne, and Y. Simard, “Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing,” Infrared Phys. Technol. 45(1), 59–68 (2004).
[Crossref]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Lawler, W. B.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Li, L.

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

McEvoy, H.

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

Meca, F. J.

F. J. Rodriguez, F. J. Meca, J. A. Jimenez, and E. J. Bueno, “Monitoring and quality improvement of pharmaceutical glass container’s manufacturing process,” IEEE Trans. Instrum. Meas. 57(3), 584–590 (2008).
[Crossref]

Mekhontsev, S.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

Milanovic, V.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Molleda, J.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

Moss, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Padgett, M. J.

Peacock, G. R.

G. R. Peacock, “A review of non-contact process temperature measurements in steel manufacturing,” Proc. SPIE 3700, 171–189 (1999).
[Crossref]

Phillips, D. B.

Pušnik, I.

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

Quesada, E.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Rendueles, J. L.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

Rhee, C.

J. Hahn and C. Rhee, “Interpolation equation for the calibration of infrared pyrometers,” Metrologia 31(1), 27–32 (1994).
[Crossref]

Rodriguez, F. J.

F. J. Rodriguez, F. J. Meca, J. A. Jimenez, and E. J. Bueno, “Monitoring and quality improvement of pharmaceutical glass container’s manufacturing process,” IEEE Trans. Instrum. Meas. 57(3), 584–590 (2008).
[Crossref]

Simard, Y.

A. Bendada, K. Cole, M. Lamontagne, and Y. Simard, “Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing,” Infrared Phys. Technol. 45(1), 59–68 (2004).
[Crossref]

Simpson, R.

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

Sohlberg, B.

J. Spannar, P. Wide, and B. Sohlberg, “A method for measuring strip temperature in the steel industry,” IEEE Trans. Instrum. Meas. 51(6), 1240–1245 (2002).
[Crossref]

Spannar, J.

J. Spannar, P. Wide, and B. Sohlberg, “A method for measuring strip temperature in the steel industry,” IEEE Trans. Instrum. Meas. 51(6), 1240–1245 (2002).
[Crossref]

Stankovic, L.

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

Stankovic, V.

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

Stann, B. L.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Su, Z.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Sudharsanan, R.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Sun, M.-J.

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Tan, C.

M. Hobbs, C. Tan, and J. Willmott, “Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry,” J. Instrum. 8(3), P03016 (2013).
[Crossref]

Usamentiaga, R.

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

Uttamchandani, D.

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

Whittam, A.

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

Wide, P.

J. Spannar, P. Wide, and B. Sohlberg, “A method for measuring strip temperature in the steel industry,” IEEE Trans. Instrum. Meas. 51(6), 1240–1245 (2002).
[Crossref]

Willmott, J.

M. Hobbs, C. Tan, and J. Willmott, “Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry,” J. Instrum. 8(3), P03016 (2013).
[Crossref]

Xie, Z.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Yang, J.

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Yao, Q.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Yoon, H. W.

Yuan, P.

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

Zhong, Z.

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

Zong, Y.

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

IEEE Signal Process. Mag. (1)

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

IEEE Trans. Instrum. Meas. (5)

R. Usamentiaga, D. F. Garcia, and J. Molleda, “Uncertainty analysis in spatial thermal measurements using infrared line scanners,” IEEE Trans. Instrum. Meas. 57(9), 2074–2082 (2008).
[Crossref]

J. Spannar, P. Wide, and B. Sohlberg, “A method for measuring strip temperature in the steel industry,” IEEE Trans. Instrum. Meas. 51(6), 1240–1245 (2002).
[Crossref]

F. J. Rodriguez, F. J. Meca, J. A. Jimenez, and E. J. Bueno, “Monitoring and quality improvement of pharmaceutical glass container’s manufacturing process,” IEEE Trans. Instrum. Meas. 57(3), 584–590 (2008).
[Crossref]

Q. He, Z. Su, Z. Xie, Z. Zhong, and Q. Yao, “A Novel Principle for Molten Steel Level Measurement in Tundish by Using Temperature Gradient,” IEEE Trans. Instrum. Meas. 66(7), 1809–1819 (2017).
[Crossref]

R. Usamentiaga, J. Molleda, D. F. Garcia, J. C. Granda, and J. L. Rendueles, “Temperature measurement of molten pig iron with slag characterization and detection using infrared computer vision,” IEEE Trans. Instrum. Meas. 61(5), 1149–1159 (2012).
[Crossref]

Infrared Phys. Technol. (1)

A. Bendada, K. Cole, M. Lamontagne, and Y. Simard, “Infrared radiometry using a dielectric-silver-coated hollow glass waveguide for polymer processing,” Infrared Phys. Technol. 45(1), 59–68 (2004).
[Crossref]

Int. J. Thermophys. (2)

J. Envall, S. Mekhontsev, Y. Zong, and L. Hanssen, “Spatial scatter effects in the calibration of IR pyrometers and imagers,” Int. J. Thermophys. 30(1), 167–178 (2009).
[Crossref]

G. Grgić and I. Pušnik, “Analysis of thermal imagers,” Int. J. Thermophys. 32(1–2), 237–247 (2011).
[Crossref]

J. Instrum. (1)

M. Hobbs, C. Tan, and J. Willmott, “Evaluation of phase sensitive detection method and Si avalanche photodiode for radiation thermometry,” J. Instrum. 8(3), P03016 (2013).
[Crossref]

J. Micromech. Microeng. (1)

L. Li, V. Stankovic, L. Stankovic, L. Li, S. Cheng, and D. Uttamchandani, “Single pixel optical imaging using a scanning MEMS mirror,” J. Micromech. Microeng. 21(2), 025022 (2011).
[Crossref]

J. Phys. E Sci. Instrum. (1)

J. Dixon, “Radiation thermometry,” J. Phys. E Sci. Instrum. 21(5), 425–436 (1988).
[Crossref]

J. Sens. Sens. Syst. (1)

H. Budzier and G. Gerlach, “Calibration of uncooled thermal infrared cameras,” J. Sens. Sens. Syst. 4(1), 187–197 (2015).
[Crossref]

Metrologia (2)

J. Hahn and C. Rhee, “Interpolation equation for the calibration of infrared pyrometers,” Metrologia 31(1), 27–32 (1994).
[Crossref]

J. Bezemer, “Spectral sensitivity corrections for optical standard pyrometers,” Metrologia 10(2), 47–52 (1974).
[Crossref]

Opt. Express (2)

Proc. SPIE (3)

G. R. Peacock, “A review of non-contact process temperature measurements in steel manufacturing,” Proc. SPIE 3700, 171–189 (1999).
[Crossref]

R. Moss, P. Yuan, X. Bai, E. Quesada, R. Sudharsanan, B. L. Stann, J. F. Dammann, M. M. Giza, and W. B. Lawler, “Low-cost compact MEMS scanning LADAR system for robotic applications,” Proc. SPIE 8379, 837903 (2012).
[Crossref]

V. Milanović, A. Kasturi, J. Yang, and F. Hu, “Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications,” Proc. SPIE 10191, 101910N (2017).
[Crossref]

Other (7)

P. Saunders, “Uncertainty Arising from the Use of the Mean Effective Wavelength in Realizing ITS-90,” in AIP Conference Proceedings (AIP, 2003), pp. 639–644.

A. Whittam, R. Simpson, and H. McEvoy, “Performance tests of thermal imaging systems to assess their suitability for quantitative temperature measurements,” in 12th International Conference on Quantitative InfraRed Thermography (QIRT, 2014).
[Crossref]

L. Chen, H. Gao, Y. Zhao, Y. Yu, and D. Wang, “Temperature error in casting radiation thermometry caused by emissivity error and measurement wavelength,” in ICIEA2008:3rd IEEE Conference on Industrial Electronics and Applications (IEEE, 2008), pp. 1047–1049.

Hamamatsu Photonics, “Si photodiodes - S1087/S1133 series,” http://www.hamamatsu.com/resources/pdf/ssd/s1087_etc_kspd1039e.pdf . Last Accessed: August, 2017.

Hamamatsu Photonics, “Si APD - S9251/S12092 series,” http://www.hamamatsu.com/resources/pdf/ssd/s9251_etc_kapd1013e.pdf . Last Accessed: August, 2017.

W. Aenchbacher and T. Kurzweg, “Single-pixel, MEMS scanning mirror camera,” in IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 849–850.
[Crossref]

P. Saunders, Radiation Thermometry: Fundamentals and Applications in the Petrochemical Industry (SPIE Ppress, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 MEMS single-pixel thermal imaging setup diagram.
Fig. 2
Fig. 2 Single-pixel imager calibration steps.
Fig. 3
Fig. 3 (a) Mean output voltage and (b) noise for Si photodiode and Si APD imagers with furnace temperature.
Fig. 4
Fig. 4 SSE analysis for (a) Si photodiode and (b) Si APD imagers with increasing target aperture size at a furnace temperature of 800 °C.
Fig. 5
Fig. 5 Mid-point cross sections of the 10 mm target aperture thermal images for (a) Si photodiode and (b) Si APD imagers at a furnace temperature of 800 °C.
Fig. 6
Fig. 6 SSE analysis for (a) Si APD and (b) bolometer camera imagers with increasing target aperture size at a furnace temperature of 800 °C.
Fig. 7
Fig. 7 Mid-point cross sections of the thermal images for (a) Si APD and (b) bolometer camera imagers at a furnace temperature of 800 °C.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L(λ)= c 1 λ 5 exp( c 2 λT )
V=exp( 1 T m+c )

Metrics