Abstract

We investigate partial response signaling (PRS) as a way of increasing the transmission length achievable by direct detection optical systems. The performance of the duobinary and PRS modulations is evaluated against that of conventional on-off-keying (OOK). We prove by simulation and experimentally that duobinary increases the link distance by up to 1.5 times and PRS by up to 3 times, when no signal processing is employed. The gain is preserved even when equalization is used. PRS is employed also with 4-level pulse-amplitude modulation (PAM-4) and is shown to improve the transmission distance by almost 3 times.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
50 Gb/s short-reach interconnects with DSP-free direct-detection enabled by CAPS codes

Mohamed Morsy-Osman, Francesco Fresi, Enrico Forestieri, Marco Secondini, Luca Potì, Fabio Cavaliere, Stephane Lessard, and David V. Plant
Opt. Express 26(14) 17916-17926 (2018)

Transmission of single lane 128 Gbit/s PAM-4 signals over an 80 km SSMF link, enabled by DDMZM aided dispersion pre-compensation

Qiang Zhang, Nebojsa Stojanovic, Changsong Xie, Cristian Prodaniuc, and Piotr Laskowski
Opt. Express 24(21) 24580-24591 (2016)

Optical filter requirements in an EML-based single-sideband PAM4 intensity-modulation and direct-detection transmission system

Hsing-Yu Chen, Noriaki Kaneda, Jeffrey Lee, Jyehong Chen, and Young-Kai Chen
Opt. Express 25(6) 5852-5860 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
    [Crossref]
  2. IEEE P802.3bs 200 GbE & 400 GbE Task Force, http://www.ieee802.org/3/bs/public/15_01/index.shtml .
  3. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
    [Crossref]
  4. L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
    [Crossref]
  5. J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J.-Y. Dupuy, and Y.-K. Chen, ”Serial 103.125-Gb/s transmission over 1 km SSMF for low-cost, short-reach optical interconnects,”' in Optical Fiber Communication Conference 2014 (2014), paper Th5A.5.
    [Crossref]
  6. W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communications Conference 2015 (2015), paper PDP1.4.
    [Crossref]
  7. C. Prodaniuc, N. Stojanovic, Z. Qiang, and R. Llorente, “Two-tap digital pre-emphasis for low-bandwidth 112 Gbps, PAM-4 transmissions,” in IEEE Photonics Conference 2016 (2016), paper MB4.4.
    [Crossref]
  8. F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Experimental performance evaluation of equalization techniques for 56 Gb/s PAM-4 VCSEL-based optical interconnects,” in European Conference on Optical Communications Conference 2015 (2015), paper P.4.10.
    [Crossref]
  9. N. Eiselt, H. Griesser, M. Eiselt, W. Kaiser, S. Aramideh, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Real-time 200 Gb/s (4x56.25 Gb/s) PAM-4 transmission over 80 km SSMF using quantum-dot laser and silicon ring-modulator,” in Optical Fiber Conference 2017 (2017), paper W4D.3.
    [Crossref]
  10. F. Karinou, N. Stojanovic, and C. Prodaniuc, “56 Gb/s 20-km transmission of PAM-4 signal employing an EML in C-band without in-line chromatic dispersion compensation,” in European Conference on Optical Communications Conference 2016 (2016), paper M.2.C.
  11. J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. H. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Demonstration of the first real-time end-to-end 40-Gb/s PAM-4 for next-generation access applications using 10-Gb/s transmitter,” J. Lightwave Technol. 34(7), 1628–1635 (2016).
    [Crossref]
  12. X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
    [Crossref]
  13. C. Prodaniuc, N. Stojanovic, F. Karinou, Z. Qiang, and R. Llorente, “Performance comparison between 4D trellis coded modulation and PAM-4 for low-cost 400 Gbps WDM optical networks,” J. Lightwave Technol. 34(22), 5308–5316 (2016).
    [Crossref]
  14. N. Stojanovic, C. Prodaniuc, F. Karinou, and Z. Qiang, “56-Gbit/s 4-D PAM-4 TCM transmission evaluation for 400-G data center applications,” in Optical Fiber Conference 2016 (2016), paper Th1G.6.
    [Crossref]
  15. S. Walklin and J. Conradi, “On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems,” IEEE Photonics Technol. Lett. 9(7), 1005–1007 (1997).
    [Crossref]
  16. J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
    [Crossref]
  17. N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, S. Radic, and P. A. Andrekson, “Experimental Demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600km-SMF link without optical dispersion compensation,” in Optical Fiber Conference 2006 (2006), paper OWB7.
  18. F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Poti, and E. Forestieri, “Short-reach distance extension through CAPS coding and DSP-free direct detection receiver,” in European Conference on Optical Communications 2016 (2016), paper Th2.P2.SC3.10.
  19. E. Forestieri and G. Prati, “Novel optical line codes tolerant to fiber chromatic dispersion,” J. Lightwave Technol. 19(11), 1675–1684 (2001).
    [Crossref]
  20. J. G. Proakis, Digital Communications (McGraw Hill, 2001), Chap. 9.2.3.
  21. L. F. Suhr, J. J. V. Olmos, C. Peucheret, and I. T. Monroy, “Direct modulation and detection link using polybinary signaling,” in Opto-electronics and Communication Conference and Australian Conference on Optical Fibre Technology Proceedings 2014 (2014), pp. 950–951.
  22. N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in European Conference on Optical Communications 2015 (2015), paper PDP1.4.
    [Crossref]
  23. D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40(1), 43–63 (1961).
    [Crossref]
  24. H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40(1), 65–84 (1961).
    [Crossref]

2017 (1)

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

2016 (2)

2013 (1)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

2012 (1)

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

2006 (1)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

2001 (1)

1997 (1)

S. Walklin and J. Conradi, “On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems,” IEEE Photonics Technol. Lett. 9(7), 1005–1007 (1997).
[Crossref]

1992 (1)

J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
[Crossref]

1961 (2)

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40(1), 43–63 (1961).
[Crossref]

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40(1), 65–84 (1961).
[Crossref]

Chi, N.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Conradi, J.

S. Walklin and J. Conradi, “On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems,” IEEE Photonics Technol. Lett. 9(7), 1005–1007 (1997).
[Crossref]

Eiselt, M. H.

Eiselt, N.

Elbers, J.-P.

Essiambre, R.-J.

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Forestieri, E.

Gaiarin, S.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Griesser, H.

Grobe, K.

Jacobsen, G.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Ji, Y.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Kakkar, A.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Karinou, F.

Landau, H. J.

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40(1), 65–84 (1961).
[Crossref]

Lau, A. P. T.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Liu, J.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Llorente, R.

Lu, C.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Monroy, I. T.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. H. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Demonstration of the first real-time end-to-end 40-Gb/s PAM-4 for next-generation access applications using 10-Gb/s transmitter,” J. Lightwave Technol. 34(7), 1628–1635 (2016).
[Crossref]

L. F. Suhr, J. J. V. Olmos, C. Peucheret, and I. T. Monroy, “Direct modulation and detection link using polybinary signaling,” in Opto-electronics and Communication Conference and Australian Conference on Optical Fibre Technology Proceedings 2014 (2014), pp. 950–951.

Navarro, J. R.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Olmedo, M. I.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Olmos, J. J. V.

J. Wei, N. Eiselt, H. Griesser, K. Grobe, M. H. Eiselt, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Demonstration of the first real-time end-to-end 40-Gb/s PAM-4 for next-generation access applications using 10-Gb/s transmitter,” J. Lightwave Technol. 34(7), 1628–1635 (2016).
[Crossref]

L. F. Suhr, J. J. V. Olmos, C. Peucheret, and I. T. Monroy, “Direct modulation and detection link using polybinary signaling,” in Opto-electronics and Communication Conference and Australian Conference on Optical Fibre Technology Proceedings 2014 (2014), pp. 950–951.

Ozolins, O.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Pang, X.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Petermann, K.

J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
[Crossref]

Peucheret, C.

L. F. Suhr, J. J. V. Olmos, C. Peucheret, and I. T. Monroy, “Direct modulation and detection link using polybinary signaling,” in Opto-electronics and Communication Conference and Australian Conference on Optical Fibre Technology Proceedings 2014 (2014), pp. 950–951.

Pollak, H. O.

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40(1), 65–84 (1961).
[Crossref]

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40(1), 43–63 (1961).
[Crossref]

Popov, S.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Prati, G.

Prodaniuc, C.

Qiang, Z.

Schatz, R.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Slepian, D.

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40(1), 43–63 (1961).
[Crossref]

Stojanovic, N.

Suhr, L. F.

L. F. Suhr, J. J. V. Olmos, C. Peucheret, and I. T. Monroy, “Direct modulation and detection link using polybinary signaling,” in Opto-electronics and Communication Conference and Australian Conference on Optical Fibre Technology Proceedings 2014 (2014), pp. 950–951.

Tao, L.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Tkach, R. W.

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Udalcovs, A.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Walklin, S.

S. Walklin and J. Conradi, “On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems,” IEEE Photonics Technol. Lett. 9(7), 1005–1007 (1997).
[Crossref]

Wang, J.

J. Wang and K. Petermann, “Small signal analysis for dispersive optical fiber communication systems,” J. Lightwave Technol. 10(1), 96–100 (1992).
[Crossref]

Wei, J.

Westergren, U.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

Zibar, D.

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

Bell Syst. Tech. J. (2)

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40(1), 43–63 (1961).
[Crossref]

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40(1), 65–84 (1961).
[Crossref]

IEEE Netw. (1)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Walklin and J. Conradi, “On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems,” IEEE Photonics Technol. Lett. 9(7), 1005–1007 (1997).
[Crossref]

X. Pang, O. Ozolins, S. Gaiarin, A. Kakkar, J. R. Navarro, M. I. Olmedo, R. Schatz, A. Udalcovs, U. Westergren, D. Zibar, S. Popov, and G. Jacobsen, “Experimental study of 1.55-µm EML-based optical IM/DD PAM-4/8 short reach systems,” IEEE Photonics Technol. Lett. 29(6), 523–526 (2017).
[Crossref]

J. Lightwave Technol. (4)

Proc. IEEE (2)

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE 94(5), 952–985 (2006).
[Crossref]

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” Proc. IEEE 100(5), 1035–1055 (2012).
[Crossref]

Other (13)

IEEE P802.3bs 200 GbE & 400 GbE Task Force, http://www.ieee802.org/3/bs/public/15_01/index.shtml .

J. Lee, N. Kaneda, T. Pfau, A. Konczykowska, F. Jorge, J.-Y. Dupuy, and Y.-K. Chen, ”Serial 103.125-Gb/s transmission over 1 km SSMF for low-cost, short-reach optical interconnects,”' in Optical Fiber Communication Conference 2014 (2014), paper Th5A.5.
[Crossref]

W. Hartmann, M. Lauermann, S. Wolf, H. Zwickel, Y. Kutuvantavida, J. Luo, A. K.-Y. Jen, W. Freude, and C. Koos, “100 Gbit/s OOK using a silicon-organic hybrid (SOH) modulator,” in European Conference on Optical Communications Conference 2015 (2015), paper PDP1.4.
[Crossref]

C. Prodaniuc, N. Stojanovic, Z. Qiang, and R. Llorente, “Two-tap digital pre-emphasis for low-bandwidth 112 Gbps, PAM-4 transmissions,” in IEEE Photonics Conference 2016 (2016), paper MB4.4.
[Crossref]

F. Karinou, C. Prodaniuc, N. Stojanovic, M. Ortsiefer, A. Daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Experimental performance evaluation of equalization techniques for 56 Gb/s PAM-4 VCSEL-based optical interconnects,” in European Conference on Optical Communications Conference 2015 (2015), paper P.4.10.
[Crossref]

N. Eiselt, H. Griesser, M. Eiselt, W. Kaiser, S. Aramideh, J. J. V. Olmos, I. T. Monroy, and J.-P. Elbers, “Real-time 200 Gb/s (4x56.25 Gb/s) PAM-4 transmission over 80 km SSMF using quantum-dot laser and silicon ring-modulator,” in Optical Fiber Conference 2017 (2017), paper W4D.3.
[Crossref]

F. Karinou, N. Stojanovic, and C. Prodaniuc, “56 Gb/s 20-km transmission of PAM-4 signal employing an EML in C-band without in-line chromatic dispersion compensation,” in European Conference on Optical Communications Conference 2016 (2016), paper M.2.C.

J. G. Proakis, Digital Communications (McGraw Hill, 2001), Chap. 9.2.3.

L. F. Suhr, J. J. V. Olmos, C. Peucheret, and I. T. Monroy, “Direct modulation and detection link using polybinary signaling,” in Opto-electronics and Communication Conference and Australian Conference on Optical Fibre Technology Proceedings 2014 (2014), pp. 950–951.

N. Stojanovic, Z. Qiang, C. Prodaniuc, and F. Karinou, “Performance and DSP complexity evaluation of a 112-Gbit/s PAM-4 transceiver employing a 25-GHz TOSA and ROSA,” in European Conference on Optical Communications 2015 (2015), paper PDP1.4.
[Crossref]

N. Alic, G. C. Papen, R. E. Saperstein, R. Jiang, C. Marki, Y. Fainman, S. Radic, and P. A. Andrekson, “Experimental Demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600km-SMF link without optical dispersion compensation,” in Optical Fiber Conference 2006 (2006), paper OWB7.

F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Poti, and E. Forestieri, “Short-reach distance extension through CAPS coding and DSP-free direct detection receiver,” in European Conference on Optical Communications 2016 (2016), paper Th2.P2.SC3.10.

N. Stojanovic, C. Prodaniuc, F. Karinou, and Z. Qiang, “56-Gbit/s 4-D PAM-4 TCM transmission evaluation for 400-G data center applications,” in Optical Fiber Conference 2016 (2016), paper Th1G.6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Spectrum comparison between OOK, duobinary and PRS (a) and CD tolerance comparison between OOK, duobinary and PRS in low and high bandwidth scenarios (b)
Fig. 2
Fig. 2 Pulse shapes (first column) for OOK (first row), DB (second row), and PRS (third row) and the corresponding eye diagrams for BTB (second column), 15 km (third column), and 30 km (fourth column). The eyes are obtained employing 20G components and a MZM at the transmitter side, OSNR = 25 dB
Fig. 3
Fig. 3 Symbol mapping for different modulation/modulator combinations (left) and OOK/PAM-4 versus PRS OOK/PAM-4 BER curves
Fig. 4
Fig. 4 Experimental setup.
Fig. 5
Fig. 5 OOK versus PRS experimental results, without DSP (left) and employing a 16-state MLSE (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

b k =( a k b k1 )modn c k = b k + b k1 d k = c k modn

Metrics