Abstract

A planar all-dielectric metamaterial made of a double-periodic lattice whose unit cell consists of a single subwavelength dielectric particle having the form of a disk possessing a penetrating hole is considered. The resonant states in the transmitted spectra of the metamaterial are identified considering modes inherent to the individual cylindrical dielectric resonator. A correlation between the asymmetry in the particle’s geometry, which arises from the off-centered displacement of the hole and the formation of the Mie-type and trapped modes, is established. The advantages of using a coaxial-sector notch instead of a round hole for the trapped mode excitation are explained.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial

Jianfa Zhang, Kevin F. MacDonald, and Nikolay I. Zheludev
Opt. Express 21(22) 26721-26728 (2013)

Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance?

Yeong Hwan Ko and Robert Magnusson
Optica 5(3) 289-294 (2018)

Simultaneous excitation of extremely high-Q-factor trapped and octupolar modes in terahertz metamaterials

Shengyan Yang, Chengchun Tang, Zhe Liu, Bo Wang, Chun Wang, Junjie Li, Li Wang, and Changzhi Gu
Opt. Express 25(14) 15938-15946 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  2. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  3. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Yu. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
    [Crossref]
  4. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
    [Crossref] [PubMed]
  5. K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34(7), D36–D41 (2017).
    [Crossref]
  6. N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
    [Crossref] [PubMed]
  7. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  8. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
    [Crossref]
  9. S. Prosvirnin and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi and M. Arsalane, eds. (Kluwer Academic Publishers, 2003), pp. 281–290.
  10. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
    [Crossref]
  12. A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
    [Crossref]
  13. V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14(3), 035103 (2012).
    [Crossref]
  14. V. V. Khardikov and S. L. Prosvirnin, “New type high-Q THz planar all-dielectric metamaterial,” in Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz), NATO Science for Peace and Security Series B: Physics and Biophysics, M. F. Pereira and O. Shulika, eds. (Springer, 2014), pp. 47–52.
  15. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21(22), 26721–26728 (2013).
    [Crossref] [PubMed]
  16. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators,” Opt. Express 22(25), 30889–30898 (2014).
    [Crossref]
  17. S. L. Prosvirnin, V. A. Dmitriev, Y. M. Kuleshov, and V. V. Khardikov, “Planar all-silicon metamaterial for terahertz applications,” Appl. Opt. 54(13), 3986–3990 (2015).
    [Crossref]
  18. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photon. 2(6), 351–354 (2008).
    [Crossref]
  19. V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterials with broken structural symmetry,” Phys. Rev. B 82(23), 233402 (2010).
    [Crossref]
  20. V. R. Tuz and S. L. Prosvirnin, “All-optical switching in metamaterial with high structural symmetry,” Eur. Phys. J. App. Phys. 56(3), 30401 (2011).
    [Crossref]
  21. V. R. Tuz, V. S. Butylkin, and S. L. Prosvirnin, “Enhancement of absorption bistability by trapping-light planar metamaterial,” J. Opt. 14(4), 045102 (2012).
    [Crossref]
  22. V. V. Khardikov and S. L. Prosvirnin, “Enhancement of quantum dot luminescence in all-dielectric metamaterial,” Radio Phys. Radio Astron. 18(4), 331–340 (2013).
  23. I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
    [Crossref]
  24. V. Khardikov, P. Mladyonov, S. Prosvirnin, and V. Tuz, “Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents,” in Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, O. Shulika and I. Sukhoivanov, eds. (Springer, 2016), pp. 81–98.
    [Crossref]
  25. X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
    [Crossref] [PubMed]
  26. L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
    [Crossref] [PubMed]
  27. B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
    [Crossref] [PubMed]
  28. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref] [PubMed]
  29. R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
    [Crossref]
  30. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
    [Crossref]
  31. V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Using of transmission matrixes and pseudospectral method in time domain to investigate light diffraction on planar periodic structures,” Radio Phys. Radio Astron. 13(2), 146–158 (2008).
  32. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 2008).
  33. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51(5), 491–498 (1961).
    [Crossref]
  34. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Labs Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  35. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – A review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput. Aided Eng. 4(3), 230–247 (1994).
    [Crossref]
  36. C. V. Stupakov and S. S. Kurennoy, “Trapped electromagnetic modes in a waveguide with a small discontinuity,” Phys. Rev. E 49(1), 794–799 (1994).
    [Crossref]
  37. A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48(8), 1419–1421 (2000).
    [Crossref]
  38. G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73(12), 125308 (2006).
    [Crossref]

2017 (4)

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Yu. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

X. Liu, K. Fan, I. V. Shadrivov, and W. J. Padilla, “Experimental realization of a terahertz all-dielectric metasurface absorber,” Opt. Express 25(1), 191–201 (2017).
[Crossref] [PubMed]

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34(7), D36–D41 (2017).
[Crossref]

2016 (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

2015 (4)

A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

S. L. Prosvirnin, V. A. Dmitriev, Y. M. Kuleshov, and V. V. Khardikov, “Planar all-silicon metamaterial for terahertz applications,” Appl. Opt. 54(13), 3986–3990 (2015).
[Crossref]

2014 (3)

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators,” Opt. Express 22(25), 30889–30898 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

2013 (2)

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21(22), 26721–26728 (2013).
[Crossref] [PubMed]

V. V. Khardikov and S. L. Prosvirnin, “Enhancement of quantum dot luminescence in all-dielectric metamaterial,” Radio Phys. Radio Astron. 18(4), 331–340 (2013).

2012 (5)

V. R. Tuz, V. S. Butylkin, and S. L. Prosvirnin, “Enhancement of absorption bistability by trapping-light planar metamaterial,” J. Opt. 14(4), 045102 (2012).
[Crossref]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14(3), 035103 (2012).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

2011 (1)

V. R. Tuz and S. L. Prosvirnin, “All-optical switching in metamaterial with high structural symmetry,” Eur. Phys. J. App. Phys. 56(3), 30401 (2011).
[Crossref]

2010 (1)

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterials with broken structural symmetry,” Phys. Rev. B 82(23), 233402 (2010).
[Crossref]

2009 (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

2008 (4)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photon. 2(6), 351–354 (2008).
[Crossref]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Using of transmission matrixes and pseudospectral method in time domain to investigate light diffraction on planar periodic structures,” Radio Phys. Radio Astron. 13(2), 146–158 (2008).

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

2007 (2)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

2006 (1)

G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73(12), 125308 (2006).
[Crossref]

2000 (1)

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48(8), 1419–1421 (2000).
[Crossref]

1994 (2)

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – A review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput. Aided Eng. 4(3), 230–247 (1994).
[Crossref]

C. V. Stupakov and S. S. Kurennoy, “Trapped electromagnetic modes in a waveguide with a small discontinuity,” Phys. Rev. E 49(1), 794–799 (1994).
[Crossref]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Labs Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

1961 (1)

Alessandri, I.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Annino, G.

G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73(12), 125308 (2006).
[Crossref]

Baryshnikova, K. V.

Belov, P. A.

Bhartia, P.

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – A review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput. Aided Eng. 4(3), 230–247 (1994).
[Crossref]

Bobowska, I.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 2008).

Bontempi, N.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

Butylkin, V. S.

V. R. Tuz, V. S. Butylkin, and S. L. Prosvirnin, “Enhancement of absorption bistability by trapping-light planar metamaterial,” J. Opt. 14(4), 045102 (2012).
[Crossref]

Cassettari, M.

G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73(12), 125308 (2006).
[Crossref]

Chen, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Chichkov, B. N.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Choi, D.-Y.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Chong, K. E.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Chung, U.-C.

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

Cummer, S. A.

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

Decker, M.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Dmitriev, V. A.

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Elissalde, C.

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

Evlyukhin, A. B.

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34(7), D36–D41 (2017).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Fan, K.

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photon. 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Fofang, N. T.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
[Crossref]

Grobelny, J.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Grzegorczyk, T. M.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 2008).

Iarko, E. O.

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14(3), 035103 (2012).
[Crossref]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Using of transmission matrixes and pseudospectral method in time domain to investigate light diffraction on planar periodic structures,” Radio Phys. Radio Astron. 13(2), 146–158 (2008).

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jain, A.

A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
[Crossref]

Kadlubowski, S.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Khardikov, V.

V. Khardikov, P. Mladyonov, S. Prosvirnin, and V. Tuz, “Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents,” in Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, O. Shulika and I. Sukhoivanov, eds. (Springer, 2016), pp. 81–98.
[Crossref]

Khardikov, V. V.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

S. L. Prosvirnin, V. A. Dmitriev, Y. M. Kuleshov, and V. V. Khardikov, “Planar all-silicon metamaterial for terahertz applications,” Appl. Opt. 54(13), 3986–3990 (2015).
[Crossref]

V. V. Khardikov and S. L. Prosvirnin, “Enhancement of quantum dot luminescence in all-dielectric metamaterial,” Radio Phys. Radio Astron. 18(4), 331–340 (2013).

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14(3), 035103 (2012).
[Crossref]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Using of transmission matrixes and pseudospectral method in time domain to investigate light diffraction on planar periodic structures,” Radio Phys. Radio Astron. 13(2), 146–158 (2008).

V. V. Khardikov and S. L. Prosvirnin, “New type high-Q THz planar all-dielectric metamaterial,” in Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz), NATO Science for Peace and Security Series B: Physics and Biophysics, M. F. Pereira and O. Shulika, eds. (Springer, 2014), pp. 47–52.

Kirilenko, A. A.

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48(8), 1419–1421 (2000).
[Crossref]

Kivshar, Yu. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Yu. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Yu. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Kochetova, L. A.

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterials with broken structural symmetry,” Phys. Rev. B 82(23), 233402 (2010).
[Crossref]

Kong, J. A.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Koschny, T.

A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
[Crossref]

Krasnok, A. E.

Krzywania-Kaliszewska, A.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Kuleshov, Y. M.

Kurennoy, S. S.

C. V. Stupakov and S. S. Kurennoy, “Trapped electromagnetic modes in a waveguide with a small discontinuity,” Phys. Rev. E 49(1), 794–799 (1994).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Yu. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
[Crossref]

Liu, S.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

Liu, W.

Liu, X.

Luk, T. S.

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

MacDonald, K. F.

Maglione, M.

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Labs Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Martinelli, M.

G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73(12), 125308 (2006).
[Crossref]

Miroshnichenko, A. E.

Mladyonov, P.

V. Khardikov, P. Mladyonov, S. Prosvirnin, and V. Tuz, “Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents,” in Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, O. Shulika and I. Sukhoivanov, eds. (Springer, 2016), pp. 81–98.
[Crossref]

Moitra, P.

A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
[Crossref]

Mongia, R. K.

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – A review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput. Aided Eng. 4(3), 230–247 (1994).
[Crossref]

Mospan, L. P.

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48(8), 1419–1421 (2000).
[Crossref]

Mounaix, P.

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

Neshev, D. N.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

Novitsky, A.

Opasinska, A.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Orton, H. W.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Padilla, W. J.

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photon. 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Peng, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Yu. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Popa, B.-I.

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

Prosvirnin, S.

V. Khardikov, P. Mladyonov, S. Prosvirnin, and V. Tuz, “Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents,” in Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, O. Shulika and I. Sukhoivanov, eds. (Springer, 2016), pp. 81–98.
[Crossref]

S. Prosvirnin and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi and M. Arsalane, eds. (Kluwer Academic Publishers, 2003), pp. 281–290.

Prosvirnin, S. L.

S. L. Prosvirnin, V. A. Dmitriev, Y. M. Kuleshov, and V. V. Khardikov, “Planar all-silicon metamaterial for terahertz applications,” Appl. Opt. 54(13), 3986–3990 (2015).
[Crossref]

V. V. Khardikov and S. L. Prosvirnin, “Enhancement of quantum dot luminescence in all-dielectric metamaterial,” Radio Phys. Radio Astron. 18(4), 331–340 (2013).

V. R. Tuz, V. S. Butylkin, and S. L. Prosvirnin, “Enhancement of absorption bistability by trapping-light planar metamaterial,” J. Opt. 14(4), 045102 (2012).
[Crossref]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14(3), 035103 (2012).
[Crossref]

V. R. Tuz and S. L. Prosvirnin, “All-optical switching in metamaterial with high structural symmetry,” Eur. Phys. J. App. Phys. 56(3), 30401 (2011).
[Crossref]

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterials with broken structural symmetry,” Phys. Rev. B 82(23), 233402 (2010).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photon. 2(6), 351–354 (2008).
[Crossref]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Using of transmission matrixes and pseudospectral method in time domain to investigate light diffraction on planar periodic structures,” Radio Phys. Radio Astron. 13(2), 146–158 (2008).

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

V. V. Khardikov and S. L. Prosvirnin, “New type high-Q THz planar all-dielectric metamaterial,” in Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz), NATO Science for Peace and Security Series B: Physics and Biophysics, M. F. Pereira and O. Shulika, eds. (Springer, 2014), pp. 47–52.

Qin, S.

Ran, L.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Reinhardt, C.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Yu. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Labs Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Shadrivov, I. V.

Shalin, A. S.

Snitzer, E.

Soukoulis, C. M.

A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
[Crossref]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Staude, I.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

Stupakov, C. V.

C. V. Stupakov and S. S. Kurennoy, “Trapped electromagnetic modes in a waveguide with a small discontinuity,” Phys. Rev. E 49(1), 794–799 (1994).
[Crossref]

Tracz, M.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Tuz, V.

V. Khardikov, P. Mladyonov, S. Prosvirnin, and V. Tuz, “Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents,” in Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, O. Shulika and I. Sukhoivanov, eds. (Springer, 2016), pp. 81–98.
[Crossref]

Tuz, V. R.

V. R. Tuz, V. S. Butylkin, and S. L. Prosvirnin, “Enhancement of absorption bistability by trapping-light planar metamaterial,” J. Opt. 14(4), 045102 (2012).
[Crossref]

V. R. Tuz and S. L. Prosvirnin, “All-optical switching in metamaterial with high structural symmetry,” Eur. Phys. J. App. Phys. 56(3), 30401 (2011).
[Crossref]

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterials with broken structural symmetry,” Phys. Rev. B 82(23), 233402 (2010).
[Crossref]

Valentine, J.

A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
[Crossref]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Vigneras, V.

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
[Crossref]

Wojciechowski, P.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Wypych, A.

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

Yashiro, H.

G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73(12), 125308 (2006).
[Crossref]

Yuan, X.

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, H.

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

Zhang, J.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
[Crossref]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
[Crossref]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zheludev, N. I.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial,” Opt. Express 21(22), 26721–26728 (2013).
[Crossref] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photon. 2(6), 351–354 (2008).
[Crossref]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhu, Z.

Zouhdi, S.

S. Prosvirnin and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi and M. Arsalane, eds. (Kluwer Academic Publishers, 2003), pp. 281–290.

Zywietz, U.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

I. Staude, V. V. Khardikov, N. T. Fofang, S. Liu, M. Decker, D. N. Neshev, T. S. Luk, I. Brener, and Yu. S. Kivshar, “Shaping photoluminescence spectra with magnetoelectric resonances in all-dielectric nanoparticles,” ACS Photonics 2(2), 172–177 (2015).
[Crossref]

Adv. Opt. Mater. (2)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Yu. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3(6), 813–820 (2015).
[Crossref]

A. Jain, P. Moitra, T. Koschny, J. Valentine, and C. M. Soukoulis, “Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms,” Adv. Opt. Mater. 3(10), 1431–1438 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, V. Vigneras, and P. Mounaix, “Towards left-handed metamaterials using single-size dielectric resonators: the case of TiO2-disks at millimeter wavelengths,” Appl. Phys. Lett. 101(4), 042909 (2012).
[Crossref]

Bell Labs Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Labs Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Eur. Phys. J. App. Phys. (1)

V. R. Tuz and S. L. Prosvirnin, “All-optical switching in metamaterial with high structural symmetry,” Eur. Phys. J. App. Phys. 56(3), 30401 (2011).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

A. A. Kirilenko and L. P. Mospan, “Reflection resonances and natural oscillations of two-aperture iris in rectangular waveguide,” IEEE Trans. Microwave Theory Tech. 48(8), 1419–1421 (2000).
[Crossref]

Int. J. RF Microw. Comput. Aided Eng. (1)

R. K. Mongia and P. Bhartia, “Dielectric resonator antennas – A review and general design relations for resonant frequency and bandwidth,” Int. J. RF Microw. Comput. Aided Eng. 4(3), 230–247 (1994).
[Crossref]

J. Nanomater. (1)

A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, “Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods,” J. Nanomater. 2014, 124814 (2014).
[Crossref]

J. Opt. (2)

V. R. Tuz, V. S. Butylkin, and S. L. Prosvirnin, “Enhancement of absorption bistability by trapping-light planar metamaterial,” J. Opt. 14(4), 045102 (2012).
[Crossref]

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “A giant red shift and enhancement of the light confinement in a planar array of dielectric bars,” J. Opt. 14(3), 035103 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nanoscale (1)

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Yu. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9(15), 4972–4980 (2017).
[Crossref] [PubMed]

Nat. Commun. (2)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Nat. Photon. (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photon. 2(6), 351–354 (2008).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Yu. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Opt. Express (4)

Phys. Rev. B (2)

G. Annino, H. Yashiro, M. Cassettari, and M. Martinelli, “Properties of trapped electromagnetic modes in coupled waveguides,” Phys. Rev. B 73(12), 125308 (2006).
[Crossref]

V. R. Tuz, S. L. Prosvirnin, and L. A. Kochetova, “Optical bistability involving planar metamaterials with broken structural symmetry,” Phys. Rev. B 82(23), 233402 (2010).
[Crossref]

Phys. Rev. E (1)

C. V. Stupakov and S. S. Kurennoy, “Trapped electromagnetic modes in a waveguide with a small discontinuity,” Phys. Rev. E 49(1), 794–799 (1994).
[Crossref]

Phys. Rev. Lett. (4)

L. Peng, L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, “Experimental observation of left-handed behavior in an array of standard dielectric resonators,” Phys. Rev. Lett. 98(15), 157403 (2007).
[Crossref] [PubMed]

B.-I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett. 100(20), 207401 (2008).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 04740 (2008).
[Crossref]

Radio Phys. Radio Astron. (2)

V. V. Khardikov and S. L. Prosvirnin, “Enhancement of quantum dot luminescence in all-dielectric metamaterial,” Radio Phys. Radio Astron. 18(4), 331–340 (2013).

V. V. Khardikov, E. O. Iarko, and S. L. Prosvirnin, “Using of transmission matrixes and pseudospectral method in time domain to investigate light diffraction on planar periodic structures,” Radio Phys. Radio Astron. 13(2), 146–158 (2008).

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 2008).

V. Khardikov, P. Mladyonov, S. Prosvirnin, and V. Tuz, “Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents,” in Contemporary Optoelectronics: Materials, Metamaterials and Device Applications, O. Shulika and I. Sukhoivanov, eds. (Springer, 2016), pp. 81–98.
[Crossref]

V. V. Khardikov and S. L. Prosvirnin, “New type high-Q THz planar all-dielectric metamaterial,” in Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz), NATO Science for Peace and Security Series B: Physics and Biophysics, M. F. Pereira and O. Shulika, eds. (Springer, 2014), pp. 47–52.

S. Prosvirnin and S. Zouhdi, “Resonances of closed modes in thin arrays of complex particles,” in Advances in Electromagnetics of Complex Media and Metamaterials, S. Zouhdi and M. Arsalane, eds. (Kluwer Academic Publishers, 2003), pp. 281–290.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fragment of a single-particle planar all-dielectric metamaterial. The structure is under an illumination of a normally incident plane wave whose electric field vector is directed along the x-axis (x-polarization).
Fig. 2
Fig. 2 (a) Transmission coefficient magnitude of an all-dielectric metamaterial possessing symmetrical unit cell with a solid disk (solid blue line) and a disk having centered (θ = 0) round hole (dashed red line), and (b) cross-section patterns of electric (red arrows) and magnetic (blue arrows) field distribution which are calculated within the unit cell at the corresponding resonant frequencies of Mie-type modes; ad = 0.457 mm, hd = 0.417 mm, d = 1.25 mm, and hs = 0.167 mm.
Fig. 3
Fig. 3 (a) Transmission coefficient magnitude of an all-dielectric metamaterial possessing asymmetrical unit cell with a disk having off-centered (θ ≠ 0) round hole, and (b) cross-section patterns of electric (red arrows) and magnetic (blue arrows) field distribution which are calculated within the unit cell at the corresponding resonant frequencies of Mie-type and trapped modes; ad = 0.457 mm, hd = 0.417 mm, d = 1.25 mm, hs = 0.167 mm, and ah/ad = 0.25.
Fig. 4
Fig. 4 (a) Inverse value of the quality factor of the resonant state related to the trapped (TE01δ) mode versus the hole radius when the hole disposition is fixed and (b) transmission coefficient magnitude as a function of frequency and hole radius; ad = 0.457 mm, hd = 0.417 mm, d = 1.25 mm, hs = 0.167 mm, and θ = 0.2.
Fig. 5
Fig. 5 (a) Transmission coefficient magnitude of an all-dielectric metamaterial possessing asymmetrical unit cell with a coaxial-sector notch, and (b) cross-section patterns of electric (red arrows) and magnetic (blue arrows) field distribution which are calculated within the unit cell at the corresponding resonant frequencies of TE01δ and EH11δ modes; ad = 0.457 mm, hd = 0.43 mm, d = 1.25 mm, hs = 0.167 mm, θ = ad/2, and ah/ad = 0.125.
Fig. 6
Fig. 6 (a) Inverse value of the quality factor and (b) resonant frequencies of states related to TE01δ and EH11δ modes versus the sector opening angle for two particular values of the notch width; ad = 0.457 mm, hd = 0.417 mm, d = 1.25 mm, hs = 0.167 mm, and θ = ad/2.
Fig. 7
Fig. 7 Normalized scattering cross section of a dielectric disk having off-centered round penetrating hole made through it; ad = 0.457 mm, hd = 0.417 mm, hs = 0 mm, θ = ad/2, ah = ad/4.

Metrics