Abstract

Polarization handling in suspended silicon photonics has the potential to enable new applications in fields such as optomechanics, photonic microelectromechanical systems, and mid-infrared photonics. In this work, we experimentally demonstrate a suspended polarization beam splitter on a silicon-on-insulator waveguide platform, based on an asymmetric directional coupler. Our device presents polarization extinction ratios above 10 and 15 dB, and insertion losses below 5 and 1 dB, for TM and TE polarized input, respectively, across a 40 nm wavelength range at 1550 nm, with a device length below 8 µm. These results make our suspended polarization beam splitter a promising building block for future systems based on polarization diversity suspended photonics.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact polarization beam splitter with a high extinction ratio over S + C + L band

Ye Tian, Jifang Qiu, Chang Liu, Shenghao Tian, Zhuili Huang, and Jian Wu
Opt. Express 27(2) 999-1009 (2019)

Planar-type polarization beam splitter based on a bridged silicon waveguide coupler

Dong Wook Kim, Moon Hyeok Lee, Yudeuk Kim, and Kyong Hon Kim
Opt. Express 23(2) 998-1004 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7, 303–328 (2013).
    [Crossref]
  2. J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807 (2014).
    [Crossref] [PubMed]
  3. N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
    [Crossref]
  4. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590 (2011).
    [Crossref] [PubMed]
  5. J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38, 4–6 (2013).
    [Crossref] [PubMed]
  6. Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24, 6586–6593 (2016).
    [Crossref] [PubMed]
  7. S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” APL 98, 151101 (2011).
  8. Z. Lu, Y. Wang, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Wideband silicon photonic polarization beamsplitter based on point-symmetric cascaded broadband couplers,” Opt. Express 23, 29413–29422 (2015).
    [Crossref] [PubMed]
  9. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  10. F. Chollet, “Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review,” Micromachines 7, 18 (2016).
    [Crossref]
  11. G. J. Veldhuis, O. Parriaux, H. J. W. M. Hoekstra, and P. V. Lambeck, “Sensitivity enhancement in evanescent optical waveguide sensors,” J. Lightwave Technol. 18, 677–682 (2000).
    [Crossref]
  12. D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier, 1974).
  13. T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
    [Crossref]
  14. L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
    [Crossref]
  15. M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
    [Crossref] [PubMed]
  16. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
    [Crossref]
  17. E. Verhagen and A. Alù, “Optomechanical nonreciprocity,” Nat. Phys. 13, 922–924 (2017).
    [Crossref]
  18. A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
    [Crossref] [PubMed]
  19. C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter,” Opt. Lett. 40, 3556–3559 (2015).
    [Crossref] [PubMed]
  20. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
    [Crossref]
  21. P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
    [Crossref]
  22. A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
    [Crossref]
  23. Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
    [Crossref]
  24. A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28, 493–496 (2016).
    [Crossref]
  25. D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).
  26. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).
  27. L. He, H. Li, and M. Li, “Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices,” Sci. Adv. 2, e1600485 (2016).
    [Crossref] [PubMed]

2017 (2)

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

E. Verhagen and A. Alù, “Optomechanical nonreciprocity,” Nat. Phys. 13, 922–924 (2017).
[Crossref]

2016 (7)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28, 493–496 (2016).
[Crossref]

L. He, H. Li, and M. Li, “Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices,” Sci. Adv. 2, e1600485 (2016).
[Crossref] [PubMed]

F. Chollet, “Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review,” Micromachines 7, 18 (2016).
[Crossref]

Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt. Express 24, 6586–6593 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (4)

J.-W. Hoste, S. Werquin, T. Claes, and P. Bienstman, “Conformational analysis of proteins with a dual polarisation silicon microring,” Opt. Express 22, 2807 (2014).
[Crossref] [PubMed]

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

2013 (3)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7, 303–328 (2013).
[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

J. Wang, D. Liang, Y. Tang, D. Dai, and J. E. Bowers, “Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler,” Opt. Lett. 38, 4–6 (2013).
[Crossref] [PubMed]

2012 (1)

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

2011 (3)

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” APL 98, 151101 (2011).

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36, 2590 (2011).
[Crossref] [PubMed]

2000 (1)

Acoleyen, K.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Agarwal, A.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Alù, A.

E. Verhagen and A. Alù, “Optomechanical nonreciprocity,” Nat. Phys. 13, 922–924 (2017).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

Baets, R.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Bagheri, M.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref] [PubMed]

Bienstman, P.

Bogaerts, W.

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28, 493–496 (2016).
[Crossref]

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Bowers, J. E.

Chan, J.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

Chen, L.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Cheng, R.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Chollet, F.

F. Chollet, “Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review,” Micromachines 7, 18 (2016).
[Crossref]

Chrostowski, L.

Claes, T.

Cort, W.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Crozier, K. B.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” APL 98, 151101 (2011).

Dai, D.

Debackere, P.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Dong, B.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Dumon, P.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Errando-Herranz, C.

Fan, L.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Fukuda, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Gao, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7, 303–328 (2013).
[Crossref]

Ghosh, S.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Gröblacher, S.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

Guo, X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Gylfason, K. B.

Hallynck, E.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Han, S.

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).

Han, X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

He, L.

L. He, H. Li, and M. Li, “Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices,” Sci. Adv. 2, e1600485 (2016).
[Crossref] [PubMed]

He, S.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7, 303–328 (2013).
[Crossref]

He, Y.

Hill, J. T.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

Hoekstra, H. J. W. M.

Hope, A. P.

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28, 493–496 (2016).
[Crossref]

Hoste, J.-W.

Hu, J.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” APL 98, 151101 (2011).

Hu, T.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Jaeger, N. A. F.

Jeannic, H. Le

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Jiang, X.

Kimerling, L. C.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Kuyken, B.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

Kwok, S. W.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Lambeck, P. V.

Lee, C.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Li, H.

L. He, H. Li, and M. Li, “Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices,” Sci. Adv. 2, e1600485 (2016).
[Crossref] [PubMed]

Li, M.

L. He, H. Li, and M. Li, “Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices,” Sci. Adv. 2, e1600485 (2016).
[Crossref] [PubMed]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref] [PubMed]

Liang, D.

Lin, H.-Y. G.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Lin, P. T.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Lin, S.

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” APL 98, 151101 (2011).

Liow, T.-Y.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Liu, L.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7, 303–328 (2013).
[Crossref]

Liu, R.

Lo, G.-Q.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Lu, Z.

Luo, X.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Malik, A.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier, 1974).

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Matsuda, N.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Mitchell, A.

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28, 493–496 (2016).
[Crossref]

Muller, R. S.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).

Muneeb, M.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

Munro, W. J.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Nguyen, T. G.

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28, 493–496 (2016).
[Crossref]

Niklaus, F.

Painter, O.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

Parriaux, O.

Pernice, W. P. H.

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref] [PubMed]

Poot, M.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref] [PubMed]

Qiu, C.

Quack, N.

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).

Rakich, P. T.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Reano, R. M.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Roelkens, G.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

Selvaraja, S.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Seok, T. J.

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).

Shimizu, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Singh, V.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Song, J.

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Stemme, G.

Su, Y.

Sun, P.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Takesue, H.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Tang, H. X.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref] [PubMed]

Tang, Y.

Thourhout, D.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Tokura, Y.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Tremblay, C.

Tsuchizawa, T.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Vasiliev, A.

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

Veldhuis, G. J.

Verhagen, E.

E. Verhagen and A. Alù, “Optomechanical nonreciprocity,” Nat. Phys. 13, 922–924 (2017).
[Crossref]

Vermeulen, D.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Vos, K.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Wang, J.

Wang, Y.

Wang, Z.

Werquin, S.

Whitesides, G. M.

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Wood, M. G.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Wu, J.

Wu, M. C.

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2, 370–375 (2015).
[Crossref]

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).

Xu, D.-X.

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7, 303–328 (2013).
[Crossref]

Xu, Q.

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Yamada, K.

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Yang, J.

Yebo, N.

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

Yoo, B.-W.

Yu, K.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).

Zhang, F.

Zhang, Y.

Zou, C.-L.

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

ACS Sensors (1)

A. Vasiliev, A. Malik, M. Muneeb, B. Kuyken, R. Baets, and G. Roelkens, “On-Chip Mid-Infrared Photothermal Spectroscopy using Suspended Silicon-on-Insulator Microring Resonators,” ACS Sensors 1(11), 1301–1307 (2016).
[Crossref]

APL (1)

S. Lin, J. Hu, and K. B. Crozier, “Ultracompact, broadband slot waveguide polarization splitter,” APL 98, 151101 (2011).

IEEE Photonics Technol. Lett. (1)

A. P. Hope, T. G. Nguyen, A. Mitchell, and W. Bogaerts, “Quantitative Analysis of TM Lateral Leakage in Foundry Fabricated Silicon Rib Waveguides,” IEEE Photonics Technol. Lett. 28, 493–496 (2016).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

D. Dai, L. Liu, S. Gao, D.-X. Xu, and S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photonics Rev. 7, 303–328 (2013).
[Crossref]

Micromachines (1)

F. Chollet, “Devices Based on Co-Integrated MEMS Actuators and Optical Waveguide: A Review,” Micromachines 7, 18 (2016).
[Crossref]

Nano Lett. (1)

P. T. Lin, S. W. Kwok, H.-Y. G. Lin, V. Singh, L. C. Kimerling, G. M. Whitesides, and A. Agarwal, “Mid-Infrared Spectrometer Using Opto-Nanofluidic Slot-Waveguide for Label-Free On-Chip Chemical Sensing,” Nano Lett. 14, 231–238 (2014).
[Crossref]

Nat. Commun. (1)

Q. Xu, L. Chen, M. G. Wood, P. Sun, and R. M. Reano, “Electrically tunable optical polarization rotation on a silicon chip using Berry’s phase,” Nat. Commun. 5, 5337 (2014).
[Crossref]

Nat. Nanotechnol. (1)

M. Bagheri, M. Poot, M. Li, W. P. H. Pernice, and H. X. Tang, “Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation,” Nat. Nanotechnol. 6, 726–732 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

L. Fan, C.-L. Zou, M. Poot, R. Cheng, X. Guo, X. Han, and H. X. Tang, “Integrated optomechanical single-photon frequency shifter,” Nat. Photonics 10, 766–770 (2016).
[Crossref]

Nat. Phys. (1)

E. Verhagen and A. Alù, “Optomechanical nonreciprocity,” Nat. Phys. 13, 922–924 (2017).
[Crossref]

Nature (1)

A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, “Squeezed light from a silicon micromechanical resonator,” Nature 500, 185–189 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Photonics Res. (1)

T. Hu, B. Dong, X. Luo, T.-Y. Liow, J. Song, C. Lee, and G.-Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photonics Res. 5, 417–430 (2017).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sci. Adv. (1)

L. He, H. Li, and M. Li, “Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices,” Sci. Adv. 2, e1600485 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

N. Matsuda, H. Le Jeannic, H. Fukuda, T. Tsuchizawa, W. J. Munro, K. Shimizu, K. Yamada, Y. Tokura, and H. Takesue, “A monolithically integrated polarization entangled photon pair source on a silicon chip,” Sci. Rep. 2, 817 (2012).
[Crossref]

Other (3)

D. Marcuse, Theory of Dielectric Optical Waveguides (Elsevier, 1974).

D. Vermeulen, K. Acoleyen, S. Ghosh, S. Selvaraja, W. Cort, N. Yebo, E. Hallynck, K. Vos, P. Debackere, P. Dumon, W. Bogaerts, G. Roelkens, D. Thourhout, and R. Baets, “Efficient Tapering to the Fundamental Quasi-TM Mode in Asymmetrical Waveguides,” “ECIO 2010 - European Conference on Integrated Optics,” (2010).

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “50×50 Polarization-Insensitive Silicon Photonic MEMS Switches: Design and Experiment,” in “ECOC 2016 - Post Deadline Paper; 42nd European Conference on Optical Communication,” (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Effective mode index extracted from waveguide eigenmode simulations for a) a strip- and b) a slot-waveguide with varying silicon core widths. A width of 500 nm and 330 nm are chosen to satisfy the mode matching condition for TM0 while providing a large enough mode mismatch for the TE0 modes (> 0.5). c) and d) show the two TM supermodes present in the coupled-waveguide system, which interact along the device and result in TM0 mode coupling while leaving the TE0 mode intact. All the geometrical parameters in c) and d) are in units of nm.
Fig. 2
Fig. 2 a) The geometry of the 3D FDTD simulations, and b) top view of the simulated device routing the light to the bottom waveguide under TE-polarized input light, and c) routing the light to the top waveguide under TM-polarized input light. d) Solid lines show the transmission results, yielding a PER above 10 dB and an IL for TM below 1 dB for a 60 nm range at 1550 nm, for our designed values. The shaded areas show the effect of a fabrication variations in slot-waveguide slot width, and e) in the coupling gap.
Fig. 3
Fig. 3 a) Optical microscope images of a set of devices, with cross-sectional schematics. Our TE input device comprises a TE grating coupler input, our suspended PBS, and two outputs with their respective TM and TE grating couplers. Our TM input device consists of a TM input grating coupler and two TM output couplers b) Shows a magnified image of our PBS, showing the input waveguide, coupling region, and output waveguides. c) Normalized transmission measurements for the devices in a) show PER above 10 and 15 dB, and IL below 5 and 1 dB, for TM and TE polarized input light, respectively, across a 40 nm bandwidth at 1550 nm wavelength. Dashed lines represent the simulated transmission for the measured geometry of the device.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L π = λ 2 ( n TM 0 n TM 1 ) = 1.55 μ m 2 × ( 1.2952 1.1121 ) = 4.23 μ m .

Metrics