Abstract

An optical vortex is used to enhance the ranging accuracy of an underwater pulsed laser ranging system. An experiment is conducted whereby an underwater object is illuminated by a pulsed Gaussian beam, and both the object-reflected and scattered light are passed through a diffractive spiral phase plate prior to being imaged at the receiver. An optical vortex is formed from the spatially coherent non-scattered component of the return, providing an effective way to discriminate the desired objected reflected light from the spatially incoherent scatter. Experimental results show that the optical vortex permits a spatially coherent ballistic target return to be more easily discriminated from spatially incoherent forward scattered light up to eight attenuation lengths. The results suggest new optical sensing techniques for underwater imaging or lidar.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing underwater optical imaging by using a low-pass polarization filter

Khadidja Ould Amer, Marwa Elbouz, Ayman Alfalou, Christian Brosseau, and Jaouad Hajjami
Opt. Express 27(2) 621-643 (2019)

Modulated pulse laser with pseudorandom coding capabilities for underwater ranging, detection, and imaging

Brandon Cochenour, Linda Mullen, and John Muth
Appl. Opt. 50(33) 6168-6178 (2011)

Independent component analysis for enhancement of an FMCW optical ranging technique in turbid waters

David W. Illig, William D. Jemison, and Linda J. Mullen
Appl. Opt. 55(31) C25-C33 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. Kattawar, “Time of flight lidar measurements as an ocean probe,” Appl. Opt. 11(3), 662–666 (1972)
    [Crossref] [PubMed]
  2. G. C. Guenther, “Airborne Laser Hydrography,” U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services (1985)
  3. J. Jaffe, “Underwater Optical Imaging: The Past, the Present, and the Prospects,” IEEE J. Oceanic Eng. 40(3), 683–700, (2015)
    [Crossref]
  4. F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009)
    [Crossref]
  5. E. A. McLean, H. R. Burris, and M. P. Strand, “Short-pulse range-gated optical imaging in turbid water,” Appl. Opt. 34(21), 4343–4351 (1995)
    [Crossref] [PubMed]
  6. L. Mullen and V. Contarino, “Hybrid LIDAR-radar: Seeing through the scatter,” IEEE Microwave Magazine 1(3), 42–48 (2000)
    [Crossref]
  7. B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53(5), 051406 (2014)
    [Crossref]
  8. J. K. Nash, R. W. Lee, and L. J. Mullen, “Tailoring of RF coded optical pulses for underwater 3D imaging,” OCEANS 2015 - MTS/IEEE Washington, Washington, DC, 1–8, (2015)
  9. B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
    [Crossref]
  10. D. Palacios, D. Rozas, and G. A. Swartzlander, “Observed Scattering into a Dark Optical Vortex Core,” Phys. Rev. Lett. 88(10), 103902 (2002)
    [Crossref] [PubMed]
  11. G. Foo, D. Palacios, and G. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005)
    [Crossref]
  12. G. Swartzlander, E. Ford, R. Abdul-Malik, L. Close, M. Peters, D. Palacios, and D. Wilson, “Astronomical demonstration of an optical vortex coronagraph,” Opt. Express 16(14), 10200–10207 (2008)
    [Crossref] [PubMed]
  13. T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Scripps Inst. of Oceanography, Visibility Laboratory, San Diego, CA (1972)
    [Crossref]

2017 (1)

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

2015 (1)

J. Jaffe, “Underwater Optical Imaging: The Past, the Present, and the Prospects,” IEEE J. Oceanic Eng. 40(3), 683–700, (2015)
[Crossref]

2014 (1)

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53(5), 051406 (2014)
[Crossref]

2009 (1)

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009)
[Crossref]

2008 (1)

2005 (1)

2002 (1)

D. Palacios, D. Rozas, and G. A. Swartzlander, “Observed Scattering into a Dark Optical Vortex Core,” Phys. Rev. Lett. 88(10), 103902 (2002)
[Crossref] [PubMed]

2000 (1)

L. Mullen and V. Contarino, “Hybrid LIDAR-radar: Seeing through the scatter,” IEEE Microwave Magazine 1(3), 42–48 (2000)
[Crossref]

1995 (1)

1972 (1)

Abdul-Malik, R.

Andren, C. F.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009)
[Crossref]

Britton, W. B.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009)
[Crossref]

Burris, H. R.

Caimi, F. M.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009)
[Crossref]

Close, L.

Cochenour, B.

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53(5), 051406 (2014)
[Crossref]

Contarino, V.

L. Mullen and V. Contarino, “Hybrid LIDAR-radar: Seeing through the scatter,” IEEE Microwave Magazine 1(3), 42–48 (2000)
[Crossref]

Dalgleish, F. R.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009)
[Crossref]

Foo, G.

Ford, E.

Guenther, G. C.

G. C. Guenther, “Airborne Laser Hydrography,” U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services (1985)

Jaffe, J.

J. Jaffe, “Underwater Optical Imaging: The Past, the Present, and the Prospects,” IEEE J. Oceanic Eng. 40(3), 683–700, (2015)
[Crossref]

Johnson, E.

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

Kattawar, G.

Laux, A.

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

Lee, R. W.

J. K. Nash, R. W. Lee, and L. J. Mullen, “Tailoring of RF coded optical pulses for underwater 3D imaging,” OCEANS 2015 - MTS/IEEE Washington, Washington, DC, 1–8, (2015)

McLean, E. A.

Miller, K.

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

Morgan, K.

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

Mullen, L.

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53(5), 051406 (2014)
[Crossref]

L. Mullen and V. Contarino, “Hybrid LIDAR-radar: Seeing through the scatter,” IEEE Microwave Magazine 1(3), 42–48 (2000)
[Crossref]

Mullen, L. J.

J. K. Nash, R. W. Lee, and L. J. Mullen, “Tailoring of RF coded optical pulses for underwater 3D imaging,” OCEANS 2015 - MTS/IEEE Washington, Washington, DC, 1–8, (2015)

Nash, J. K.

J. K. Nash, R. W. Lee, and L. J. Mullen, “Tailoring of RF coded optical pulses for underwater 3D imaging,” OCEANS 2015 - MTS/IEEE Washington, Washington, DC, 1–8, (2015)

O’Connor, S.

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53(5), 051406 (2014)
[Crossref]

Palacios, D.

Peters, M.

Petzold, T. J.

T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Scripps Inst. of Oceanography, Visibility Laboratory, San Diego, CA (1972)
[Crossref]

Rodgers, L.

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

Rozas, D.

D. Palacios, D. Rozas, and G. A. Swartzlander, “Observed Scattering into a Dark Optical Vortex Core,” Phys. Rev. Lett. 88(10), 103902 (2002)
[Crossref] [PubMed]

Strand, M. P.

Swartzlander, G.

Swartzlander, G. A.

D. Palacios, D. Rozas, and G. A. Swartzlander, “Observed Scattering into a Dark Optical Vortex Core,” Phys. Rev. Lett. 88(10), 103902 (2002)
[Crossref] [PubMed]

Wilson, D.

Appl. Opt. (2)

IEEE J. Oceanic Eng. (1)

J. Jaffe, “Underwater Optical Imaging: The Past, the Present, and the Prospects,” IEEE J. Oceanic Eng. 40(3), 683–700, (2015)
[Crossref]

IEEE Microwave Magazine (1)

L. Mullen and V. Contarino, “Hybrid LIDAR-radar: Seeing through the scatter,” IEEE Microwave Magazine 1(3), 42–48 (2000)
[Crossref]

Opt. Eng. (1)

B. Cochenour, S. O’Connor, and L. Mullen, “Suppression of forward-scattered light using high-frequency intensity modulation,” Opt. Eng. 53(5), 051406 (2014)
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. Palacios, D. Rozas, and G. A. Swartzlander, “Observed Scattering into a Dark Optical Vortex Core,” Phys. Rev. Lett. 88(10), 103902 (2002)
[Crossref] [PubMed]

Proc. SPIE (2)

B. Cochenour, L. Rodgers, A. Laux, L. Mullen, K. Morgan, K. Miller, and E. Johnson, “The detection of objects in a turbid underwater medium using orbital angular momentum (OAM),” Proc. SPIE 10186, 1018603 (2017)
[Crossref]

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317, 73170E (2009)
[Crossref]

Other (3)

G. C. Guenther, “Airborne Laser Hydrography,” U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services (1985)

J. K. Nash, R. W. Lee, and L. J. Mullen, “Tailoring of RF coded optical pulses for underwater 3D imaging,” OCEANS 2015 - MTS/IEEE Washington, Washington, DC, 1–8, (2015)

T. J. Petzold, “Volume Scattering Functions for Selected Ocean Waters,” Scripps Inst. of Oceanography, Visibility Laboratory, San Diego, CA (1972)
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 A conceptual sketch of target returns (right column) with a representative streak camera image (right) for (a–b) a mirror target in clean water, (c–d) a PVC target in clean water, and (e–f) a PVC target in turbid water.
Fig. 3
Fig. 3 (a) The normalized intensity along the time axis of the streak camera, and (b) the relative error of the measured target position versus the actual target position (as measured in clean water), with no optical vortex (i.e., m = 0). The relative error increases with attenuation length due to forward scattering.
Fig. 4
Fig. 4 Post processing of streak camera images in increasingly turbid water. (a,d,g) Raw streak camera images, (b,e,h) scatter corrected images, and (c,f,i) cross-correlation between scatter corrected images and the clean water image.
Fig. 5
Fig. 5 (a) The normalized intensity taken along the time axis, through the point of maximum intensity of the cross-correlation image, and (b) the relative error of the measured target position versus the actual target position (as measured in clean water), with optical vortex (m = 16) and scattering correction. Using the optical vortex and performing the scattering correction effectively reduces the range error caused by forward scatter. The range error when no optical vortex is used (m = 0) is shown for reference.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I v o r t e x = I T , c o h e r e n t ; I c o r e = 0 ; I o u t s i d e = 0
I v o r t e x = I T , c o h e r e n t ; I c o r e 0 ; I o u t s i d e = I T , i n c o h e r e n t .
I v o r t e x = I T , c o h e r e n t + I f w d ; I c o r e = I f w d ; I o u t s i d e = I T , i n c o h e r e n t + I f w d

Metrics