Abstract

A planar metasurface composed of electronically tunable meta-atoms incorporating voltage-controlled varactor diodes is proposed as a reconfigurable meta-mirror for wavefronts control in microwave antenna applications. The dispersion responses of the cells are individually tailored in the reconfigurable metasurface so as to overcome the bandwidth limitations of passive metasurfaces and also to control the phase characteristics. By controlling the bias voltage of the varactor diodes on the planar metasurface, the phase characteristics of reflectors can be engineered. The reconfigurable meta-mirror is utilized to implement three different types of reflectors. As such, a reflectarray, a cylindrical parabolic reflector and a dihedral reflector are numerically verified in microwave regime through finite element method. Moreover, experimental measurements are performed on a fabricated prototype to validate the proposed device. Frequency agility, beam deflection and beam focusing are the main functionalities demonstrated from the proposed reconfigurable meta-mirror.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera

Okan Yurduseven, Daniel L. Marks, Thomas Fromenteze, and David R. Smith
Opt. Express 26(5) 5281-5291 (2018)

Metasurface-based focus-tunable mirror

Zehao Wang, Dashuang Liao, Ting Zhang, Tianhang Chen, Yi Ruan, and Bin Zheng
Opt. Express 27(21) 30332-30339 (2019)

Experimental validation of active holographic metasurface for electrically beam steering

Kuang Zhang, Hao Yu, Xumin Ding, and Qun Wu
Opt. Express 26(5) 6316-6324 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  5. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  6. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]
  7. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
    [Crossref] [PubMed]
  8. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
    [Crossref] [PubMed]
  9. C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
    [Crossref] [PubMed]
  10. H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5(1), 9605 (2015).
    [Crossref] [PubMed]
  11. X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
    [Crossref] [PubMed]
  12. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
    [Crossref] [PubMed]
  13. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
    [Crossref] [PubMed]
  14. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
    [Crossref]
  15. C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
    [Crossref] [PubMed]
  16. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref] [PubMed]
  17. X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
    [Crossref]
  18. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  19. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  20. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  21. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
    [Crossref]
  22. W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
    [Crossref] [PubMed]
  23. Q. Cheng, H. F. Ma, and T. J. Cui, “Broadband planar Luneburg lens based on complementary metamaterials,” Appl. Phys. Lett. 95(18), 181901 (2009).
    [Crossref]
  24. C. Pfeiffer and A. Grbic, “A printed, broadband Luneburg lens antenna,” IEEE Trans. Antenn. Propag. 58(9), 3055–3059 (2010).
    [Crossref]
  25. A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
    [Crossref]
  26. C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
    [Crossref]
  27. A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
    [Crossref]
  28. D. Germain, D. Seetharamdoo, S. N. Burokur, and A. de Lustrac, “Phase-compensated metasurface for a conformal microwave antenna,” Appl. Phys. Lett. 103(12), 124102 (2013).
    [Crossref]
  29. A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
    [Crossref] [PubMed]
  30. G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
    [Crossref]
  31. C. C. Cutler, “Parabolic-antenna design for microwaves,” Proc. IRE 35(11), 1284–1294 (1947).
  32. Y.-B. Jung, A. V. Shishlov, and S.-O. Park, “Cassegrain antenna with hybrid beam steering scheme for mobile satellite communications,” IEEE Trans. Antenn. Propag. 57(5), 1367–1372 (2009).
    [Crossref]
  33. A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
    [Crossref]
  34. Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 540–543 (2014).
    [Crossref]
  35. A. Mehrabani and L. Shafai, “Compact dual circularly polarized primary feeds for symmetric parabolic reflector antennas,” IEEE Antennas Wirel. Propag. Lett. 15, 922–925 (2016).
    [Crossref]
  36. H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
    [Crossref] [PubMed]
  37. ANSYS HFSS (High Frequency Structure Simulator), version 17 (2016).
  38. Y. Lo, “On the beam deviation factor of a parabolic reflector,” IRE Trans. Antennas Propag. 8(3), 347–349 (1960).
    [Crossref]
  39. A. W. Rudge and M. J. Withers, “Beam-scanning primary feed for parabolic reflectors,” Electron. Lett. 5(3), 39–41 (1969).
    [Crossref]
  40. A. W. Rudge and M. J. Withers, “New technique for beam steering with fixed parabolic reflectors,” in Proceedings of the Institution of Electrical Engineers (1971), pp. 857–863.
    [Crossref]
  41. J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
    [Crossref] [PubMed]
  42. Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
    [Crossref]
  43. Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]

2016 (4)

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref] [PubMed]

A. Mehrabani and L. Shafai, “Compact dual circularly polarized primary feeds for symmetric parabolic reflector antennas,” IEEE Antennas Wirel. Propag. Lett. 15, 922–925 (2016).
[Crossref]

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

2015 (5)

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5(1), 9605 (2015).
[Crossref] [PubMed]

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

2014 (6)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 540–543 (2014).
[Crossref]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

2013 (8)

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

D. Germain, D. Seetharamdoo, S. N. Burokur, and A. de Lustrac, “Phase-compensated metasurface for a conformal microwave antenna,” Appl. Phys. Lett. 103(12), 124102 (2013).
[Crossref]

A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

2012 (7)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

2011 (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (2)

C. Pfeiffer and A. Grbic, “A printed, broadband Luneburg lens antenna,” IEEE Trans. Antenn. Propag. 58(9), 3055–3059 (2010).
[Crossref]

A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
[Crossref]

2009 (2)

Y.-B. Jung, A. V. Shishlov, and S.-O. Park, “Cassegrain antenna with hybrid beam steering scheme for mobile satellite communications,” IEEE Trans. Antenn. Propag. 57(5), 1367–1372 (2009).
[Crossref]

Q. Cheng, H. F. Ma, and T. J. Cui, “Broadband planar Luneburg lens based on complementary metamaterials,” Appl. Phys. Lett. 95(18), 181901 (2009).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

1969 (1)

A. W. Rudge and M. J. Withers, “Beam-scanning primary feed for parabolic reflectors,” Electron. Lett. 5(3), 39–41 (1969).
[Crossref]

1960 (1)

Y. Lo, “On the beam deviation factor of a parabolic reflector,” IRE Trans. Antennas Propag. 8(3), 347–349 (1960).
[Crossref]

1947 (1)

C. C. Cutler, “Parabolic-antenna design for microwaves,” Proc. IRE 35(11), 1284–1294 (1947).

Aieta, F.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alù, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Arnaud, E.

A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
[Crossref]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

Boltasseva, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Burokur, S. N.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

D. Germain, D. Seetharamdoo, S. N. Burokur, and A. de Lustrac, “Phase-compensated metasurface for a conformal microwave antenna,” Appl. Phys. Lett. 103(12), 124102 (2013).
[Crossref]

Cai, T.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

Caminita, F.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chantalet, R.

A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
[Crossref]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, M.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, W. T.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Chen, X.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Cheng, Q.

Q. Cheng, H. F. Ma, and T. J. Cui, “Broadband planar Luneburg lens based on complementary metamaterials,” Appl. Phys. Lett. 95(18), 181901 (2009).
[Crossref]

Chiang, I. D.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Craig, C.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Cui, T. J.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5(1), 9605 (2015).
[Crossref] [PubMed]

Q. Cheng, H. F. Ma, and T. J. Cui, “Broadband planar Luneburg lens based on complementary metamaterials,” Appl. Phys. Lett. 95(18), 181901 (2009).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Cutler, C. C.

C. C. Cutler, “Parabolic-antenna design for microwaves,” Proc. IRE 35(11), 1284–1294 (1947).

de Lustrac, A.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

D. Germain, D. Seetharamdoo, S. N. Burokur, and A. de Lustrac, “Phase-compensated metasurface for a conformal microwave antenna,” Appl. Phys. Lett. 103(12), 124102 (2013).
[Crossref]

De Vita, P.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Dhouibi, A.

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

Ding, X.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Eleftheriades, G. V.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref] [PubMed]

Emani, N. K.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Epstein, A.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref] [PubMed]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Faenzi, M.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Gaburro, Z.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gao, D.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Germain, D.

D. Germain, D. Seetharamdoo, S. N. Burokur, and A. de Lustrac, “Phase-compensated metasurface for a conformal microwave antenna,” Appl. Phys. Lett. 103(12), 124102 (2013).
[Crossref]

Ghasemi, A.

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Gonzalez-Ovejero, D.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grbic, A.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “A printed, broadband Luneburg lens antenna,” IEEE Trans. Antenn. Propag. 58(9), 3055–3059 (2010).
[Crossref]

Guo, G.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

He, Q.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Hewak, D. W.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Hsu, W. L.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Huang, Y. W.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Juan, T.-K.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Jung, Y.-B.

Y.-B. Jung, A. V. Shishlov, and S.-O. Park, “Cassegrain antenna with hybrid beam steering scheme for mobile satellite communications,” IEEE Trans. Antenn. Propag. 57(5), 1367–1372 (2009).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kanso, A.

A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Kong, G. S.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5(1), 9605 (2015).
[Crossref] [PubMed]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Kung, W.-T.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, G.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Liao, C. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Lin, H. T.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Liu, A. Q.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Lo, Y.

Y. Lo, “On the beam deviation factor of a parabolic reflector,” IRE Trans. Antennas Propag. 8(3), 347–349 (1960).
[Crossref]

Luo, W.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

Ma, H. F.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5(1), 9605 (2015).
[Crossref] [PubMed]

Q. Cheng, H. F. Ma, and T. J. Cui, “Broadband planar Luneburg lens based on complementary metamaterials,” Appl. Phys. Lett. 95(18), 181901 (2009).
[Crossref]

Ma, S.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

Macdonald, K. F.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Maci, S.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Maddock, J.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Martini, E.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Mehmood, M. Q.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Mehrabani, A.

A. Mehrabani and L. Shafai, “Compact dual circularly polarized primary feeds for symmetric parabolic reflector antennas,” IEEE Antennas Wirel. Propag. Lett. 15, 922–925 (2016).
[Crossref]

Minatti, G.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Monediere, T.

A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
[Crossref]

Monticone, F.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Ou, J. Y.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Park, S.-O.

Y.-B. Jung, A. V. Shishlov, and S.-O. Park, “Cassegrain antenna with hybrid beam steering scheme for mobile satellite communications,” IEEE Trans. Antenn. Propag. 57(5), 1367–1372 (2009).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “A printed, broadband Luneburg lens antenna,” IEEE Trans. Antenn. Propag. 58(9), 3055–3059 (2010).
[Crossref]

Plum, E.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Pour, Z. A.

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 540–543 (2014).
[Crossref]

Priou, A.

A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

Qiu, C. W.

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Qiu, C.-W.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Roy, T.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Rudge, A. W.

A. W. Rudge and M. J. Withers, “Beam-scanning primary feed for parabolic reflectors,” Electron. Lett. 5(3), 39–41 (1969).
[Crossref]

A. W. Rudge and M. J. Withers, “New technique for beam steering with fixed parabolic reflectors,” in Proceedings of the Institution of Electrical Engineers (1971), pp. 857–863.
[Crossref]

Sabbadini, M.

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Seetharamdoo, D.

D. Germain, D. Seetharamdoo, S. N. Burokur, and A. de Lustrac, “Phase-compensated metasurface for a conformal microwave antenna,” Appl. Phys. Lett. 103(12), 124102 (2013).
[Crossref]

Shafai, L.

A. Mehrabani and L. Shafai, “Compact dual circularly polarized primary feeds for symmetric parabolic reflector antennas,” IEEE Antennas Wirel. Propag. Lett. 15, 922–925 (2016).
[Crossref]

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 540–543 (2014).
[Crossref]

Shalaev, V. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Shaltout, A. M.

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shishlov, A. V.

Y.-B. Jung, A. V. Shishlov, and S.-O. Park, “Cassegrain antenna with hybrid beam steering scheme for mobile satellite communications,” IEEE Trans. Antenn. Propag. 57(5), 1367–1372 (2009).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Sun, G.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Sun, S.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Tang, S.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

Teng, J.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Thevenot, M.

A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
[Crossref]

Tsai, D. P.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Valente, J.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Wang, C. M.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Wang, C.-M.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Wang, G. Z.

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5(1), 9605 (2015).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Wen, D.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Withers, M. J.

A. W. Rudge and M. J. Withers, “Beam-scanning primary feed for parabolic reflectors,” Electron. Lett. 5(3), 39–41 (1969).
[Crossref]

A. W. Rudge and M. J. Withers, “New technique for beam steering with fixed parabolic reflectors,” in Proceedings of the Institution of Electrical Engineers (1971), pp. 857–863.
[Crossref]

Wong, J. P. S.

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref] [PubMed]

Wu, Q.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Xiao, S.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, H.-X.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Yang, K. Y.

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Yang, K.-Y.

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Youngs, I. J.

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Yue, F.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, K.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, L.

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Zhang, S.

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Zhou, L.

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.-W. Qiu, and A. Alù, “Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency,” Adv. Mater. 27(7), 1195–1200 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C.-W. Qiu, and S. Zhang, “Longitudinal multifoci metalens for circularly polarized light,” Adv. Opt. Mater. 3(9), 1201–1206 (2015).
[Crossref]

Appl. Phys. Lett. (4)

Q. Cheng, H. F. Ma, and T. J. Cui, “Broadband planar Luneburg lens based on complementary metamaterials,” Appl. Phys. Lett. 95(18), 181901 (2009).
[Crossref]

A. Dhouibi, S. N. Burokur, A. de Lustrac, and A. Priou, “Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions,” Appl. Phys. Lett. 102(2), 024102 (2013).
[Crossref]

D. Germain, D. Seetharamdoo, S. N. Burokur, and A. de Lustrac, “Phase-compensated metasurface for a conformal microwave antenna,” Appl. Phys. Lett. 103(12), 124102 (2013).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Electron. Lett. (1)

A. W. Rudge and M. J. Withers, “Beam-scanning primary feed for parabolic reflectors,” Electron. Lett. 5(3), 39–41 (1969).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (4)

A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, “High beam steering in Fabry-Pérot leaky-wave antennas,” IEEE Antennas Wirel. Propag. Lett. 12, 261–264 (2013).
[Crossref]

A. Kanso, R. Chantalet, M. Thevenot, E. Arnaud, and T. Monediere, “Offset parabolic reflector antenna fed by EBG dual-band focal feed for space application,” IEEE Antennas Wirel. Propag. Lett. 9, 854–858 (2010).
[Crossref]

Z. A. Pour and L. Shafai, “Improved cross-polarization performance of a multi-phase-center parabolic reflector antenna,” IEEE Antennas Wirel. Propag. Lett. 13, 540–543 (2014).
[Crossref]

A. Mehrabani and L. Shafai, “Compact dual circularly polarized primary feeds for symmetric parabolic reflector antennas,” IEEE Antennas Wirel. Propag. Lett. 15, 922–925 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

Y.-B. Jung, A. V. Shishlov, and S.-O. Park, “Cassegrain antenna with hybrid beam steering scheme for mobile satellite communications,” IEEE Trans. Antenn. Propag. 57(5), 1367–1372 (2009).
[Crossref]

G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. Gonzalez-Ovejero, M. Sabbadini, and S. Maci, “Modulated metasurface antennas for space: synthesis, analysis and realizations,” IEEE Trans. Antenn. Propag. 63(4), 1288–1300 (2015).
[Crossref]

C. Pfeiffer and A. Grbic, “A printed, broadband Luneburg lens antenna,” IEEE Trans. Antenn. Propag. 58(9), 3055–3059 (2010).
[Crossref]

IRE Trans. Antennas Propag. (1)

Y. Lo, “On the beam deviation factor of a parabolic reflector,” IRE Trans. Antennas Propag. 8(3), 347–349 (1960).
[Crossref]

Light Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light Sci. Appl. 2(4), e72 (2013).
[Crossref]

Nano Lett. (5)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12(3), 1702–1706 (2012).
[Crossref] [PubMed]

S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, “High-efficiency broadband anomalous reflection by gradient meta-surfaces,” Nano Lett. 12(12), 6223–6229 (2012).
[Crossref] [PubMed]

C. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, “Efficient light bending with isotropic metamaterial Huygens’ surfaces,” Nano Lett. 14(5), 2491–2497 (2014).
[Crossref] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett. 12(9), 4932–4936 (2012).
[Crossref] [PubMed]

W. T. Chen, K. Y. Yang, C. M. Wang, Y. W. Huang, G. Sun, I. D. Chiang, C. Y. Liao, W. L. Hsu, H. T. Lin, S. Sun, L. Zhou, A. Q. Liu, and D. P. Tsai, “High-efficiency broadband meta-hologram with polarization-controlled dual images,” Nano Lett. 14(1), 225–230 (2014).
[Crossref] [PubMed]

Nat. Commun. (5)

A. Epstein, J. P. S. Wong, and G. V. Eleftheriades, “Cavity-excited Huygens’ metasurface antennas for near-unity aperture illumination efficiency from arbitrarily large apertures,” Nat. Commun. 7, 10360 (2016).
[Crossref] [PubMed]

X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, “Dual-polarity plasmonic metalens for visible light,” Nat. Commun. 3, 1198 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[Crossref]

J. Valente, J. Y. Ou, E. Plum, I. J. Youngs, and N. I. Zheludev, “A magneto-electro-optical effect in a plasmonic nanowire material,” Nat. Commun. 6, 7021 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Wang, E. T. F. Rogers, B. Gholipour, C.-M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Phys. Rev. Appl. (1)

C. Pfeiffer and A. Grbic, “Controlling vector Bessel beams with metasurfaces,” Phys. Rev. Appl. 2(4), 044012 (2014).
[Crossref]

Phys. Rev. Lett. (2)

C. Pfeiffer and A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013).
[Crossref] [PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Proc. IRE (1)

C. C. Cutler, “Parabolic-antenna design for microwaves,” Proc. IRE 35(11), 1284–1294 (1947).

Sci. Rep. (2)

H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, and L. Zhou, “Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch,” Sci. Rep. 6(1), 38255 (2016).
[Crossref] [PubMed]

H. F. Ma, G. Z. Wang, G. S. Kong, and T. J. Cui, “Independent controls of differently-polarized reflected waves by anisotropic metasurfaces,” Sci. Rep. 5(1), 9605 (2015).
[Crossref] [PubMed]

Science (5)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (2)

ANSYS HFSS (High Frequency Structure Simulator), version 17 (2016).

A. W. Rudge and M. J. Withers, “New technique for beam steering with fixed parabolic reflectors,” in Proceedings of the Institution of Electrical Engineers (1971), pp. 857–863.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic design of the reconfigurable meta-mirror. The unit cell has geometrical dimensions: p = 6 mm, w = 0.5 mm and g = 1.9 mm and DC biased incorporated a varactor diode. (b) Photography of the fabricated reconfigurable meta-mirror and electronic bias system.
Fig. 2
Fig. 2 (a) Setup of measurement of the reflection coefficient of the meta-mirror. Measured reflection responses of the meta-mirror for different bias voltages: (b) and (d) Magnitude, and (c) and (e) Phase.
Fig. 3
Fig. 3 (a) Far-field measurement setup of the reflectarray antenna. (b) Applied phase gradients (Δϕ = 15°, 30°, 45°) along the meta-mirror used for the beam steering at 9 GHz. (c) Applied bias voltage corresponding for the different configurations. (d) Simulated and measured far-field radiation patterns, where the performances obtained from the meta-mirror are normalized to that of a metal sheet. Due to the phase gradient applied along the meta-mirror, anomalous reflection is observed when illuminated by a normally incident electromagnetic wave.
Fig. 4
Fig. 4 Demonstration of frequency agility in the reflectarray meta-mirror. (a) Applied phase gradients. (b) Applied bias voltage corresponding to the different configurations. (c) - (g) Simulated and measured performances for the frequency agile anomalous reflection, where the radiation diagrams are normalized to that of a metal sheet.
Fig. 5
Fig. 5 (a) Schematic principle of using the proposed meta-mirror as a parabolic reflector antenna. (b) Calculated cylindrical parabolic phase profile at 9 GHz, 10 GHz, 11 GHz and 12 GHz. (b) Measured far-field radiation patterns of the planar parabolic reflector antenna compared to that of the feeding source alone. A highly directive beam is observed in the xOz plane.
Fig. 6
Fig. 6 Beam steering mechanism in the parabolic reflector antenna configuration. (a) Considered cases where phase profiles are shifted along x-direction on the meta-mirror, with φ0 lying at x0 = 6 mm, 12 mm and 48 mm. (b) Measured far-field radiation patterns showing off-normal radiation of the beam.
Fig. 7
Fig. 7 (a) Schematic diagram of the planar reconfigurable meta-mirror used as a corner reflector antenna. The internal angle α can be reconfigured by electronically modifying the phase profile. (b) Engineered phase profile for internal angles α = 90° and α = 120°. (c) Measured radiation patterns in xOy plane. (d) Measured radiation patterns in yOz plane.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n r sin( θ r ) n i sin( θ i )= λ 0 2π Δφ Δx
ϕ( x )= 2π λ ( ( x x 0 ) 2 4f )+ ϕ 0
ψ( x )= 2π λ 0 ( cotan( α 2 )| x | )+ ψ 0

Metrics