Abstract

Current silicon photonics phased arrays based on waveguide gratings enable beam steering with no moving parts. However, they suffer from a trade-off between beam divergence and field of view. Here, we show a platform based on silicon-nitride/silicon that achieves simultaneously minimal beam divergence and maximum field of view while maintaining performance that is robust to fabrication variations. In addition, in order to maximize the emission from the entire length of the grating, we design the grating’s strength by varying its duty cycle (apodization) to emit uniformly. We fabricate a millimeter long grating emitter with diffraction-limited beam divergence of 0.089°.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view

Kuanping Shang, Chuan Qin, Yu Zhang, Guangyao Liu, Xian Xiao, Shaoqi Feng, and S.J. B. Yoo
Opt. Express 25(17) 19655-19661 (2017)

Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering

Yu Zhang, Yi-Chun Ling, Kaiqi Zhang, Cale Gentry, David Sadighi, Greg Whaley, James Colosimo, Paul Suni, and S. J. Ben Yoo
Opt. Express 27(3) 1929-1940 (2019)

On-chip silicon optical phased array for two-dimensional beam steering

David Kwong, Amir Hosseini, John Covey, Yang Zhang, Xiaochuan Xu, Harish Subbaraman, and Ray T. Chen
Opt. Lett. 39(4) 941-944 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
    [Crossref] [PubMed]
  2. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
    [Crossref]
  3. C. V. Poulton, M. J. Byrd, M. Raval, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen, and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Opt. Lett. 42, 21–24 (2017).
    [Crossref] [PubMed]
  4. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23, 6509–6519 (2015).
    [Crossref] [PubMed]
  5. D. Kwong, A. Hosseini, J. Covey, Y. Zhang, X. Xu, H. Subbaraman, and R. T. Chen, “On-chip silicon optical phased array for two-dimensional beam steering,” Opt. Lett. 39, 941–944 (2014).
    [Crossref] [PubMed]
  6. K. V. Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonics Technol. Lett. 23, 1270–1272 (2011).
    [Crossref]
  7. M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
    [Crossref] [PubMed]
  8. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749 (2004).
    [Crossref] [PubMed]
  9. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
    [Crossref]
  10. G. Roelkens, D. V. Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14, 11622–11630 (2006).
    [Crossref] [PubMed]
  11. J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.
  12. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42, 4091–4094 (2017).
    [Crossref] [PubMed]
  13. K. Shang, C. Qin, Y. Zhang, G. Liu, X. Xiao, S. Feng, and S. J. B. Yoo, “Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view,” Opt. Express 25, 19655–19661 (2017).
    [Crossref] [PubMed]
  14. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
    [Crossref]
  15. R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient Coupling into Polymer Waveguides by Gratings,” Appl. Opt. 36, 9383 (1997).
    [Crossref]

2017 (4)

2016 (1)

2015 (1)

2014 (1)

2011 (3)

K. V. Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonics Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19, 21595–21604 (2011).
[Crossref] [PubMed]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

2010 (1)

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

2006 (1)

2004 (1)

1997 (1)

Abediasl, H.

Acoleyen, K. V.

K. V. Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonics Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

Baets, R.

Bienstman, P.

Bogaerts, W.

K. V. Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonics Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

Bovington, J.

J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.

Bovington, J. T.

Bowers, J.

J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.

Bowers, J. E.

Bräuer, A.

Byrd, M. J.

Chen, R. T.

Chen, X.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Coldren, L.

J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.

Coldren, L. A.

Cole, D. B.

Coolbaugh, D.

Covey, J.

Dannberg, P.

Dobbelaere, P. D.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Doylend, J.

J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.

Doylend, J. K.

Feng, S.

Feshali, A.

Fung, C. K. Y.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Hashemi, H.

Heck, J.

Heck, M. J. R.

Heck, M. R.

J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.

Hosseini, A.

Hutchison, D. N.

Karthe, W.

Kim, W.

Kley, E.-B.

Kumar, R.

Kwong, D.

Li, C.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Li, N.

Liu, G.

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Peters, J.

J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.

Peters, J. D.

Phare, C. T.

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Poulton, C. V.

Qin, C.

Raval, M.

Roelkens, G.

Rong, H.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

Schnabel, B.

Shang, K.

Su, Z.

Subbaraman, H.

Sun, J.

Taillaert, D.

Thourhout, D. V.

Timurdogan, E.

Tsang, H. K.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

Vermeulen, D.

Waldhäusl, R.

Watts, M. R.

Xiao, X.

Xu, X.

Yaacobi, A.

Yoo, S. J. B.

Zhang, Y.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A Grating-Coupler-Enabled CMOS Photonics Platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (2)

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, “Apodized Waveguide Grating Couplers for Efficient Coupling to Optical Fibers,” IEEE Photonics Technol. Lett. 22, 1156–1158 (2010).
[Crossref]

K. V. Acoleyen, W. Bogaerts, and R. Baets, “Two-Dimensional Dispersive Off-Chip Beam Scanner Fabricated on Silicon-On-Insulator,” IEEE Photonics Technol. Lett. 23, 1270–1272 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Optica (1)

Other (1)

J. Doylend, M. R. Heck, J. Bovington, J. Peters, L. Coldren, and J. Bowers, “Free-space Beam Steering in Two Dimensions Using a Silicon Optical Phased Array,” in “Optical Fiber Communication Conference,” (Optical Society of America, 2012), p. OM2J.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Simulation of grating’s sensitivity to process variations. (a) Strength of grating formed by etching in to a 250 nm × 450 nm silicon waveguide (orange) and by etching a 120 nm silicon nitride overlay on the same silicon waveguide (blue). The period of both gratings is 650 nm. (b) Cross section and spatial mode distribution for the silicon waveguide and (c) for the same waveguide with a silicon nitride overlay and the thin Al2O3 between the silicon nitride and silicon. One can see that since the silicon waveguide tightly confines the light, the silicon-nitride overlay only slightly perturb the mode.
Fig. 2
Fig. 2 Grating uniform emission design by apodizing the grating’s duty cycle. (a) Grating’s strength dependence on duty cycle extracted from 3D FDTD simulations. (b) The desired super-Gaussian emission profile (blue) and its corresponding grating’s strength (orange).
Fig. 3
Fig. 3 Platform fabrication steps. (a) Deposition of 8 nm of Al2O3 and 120 nm of silicon nitride layers. Defining the grating using E-beam. (b) Etching of silicon-nitride layer and stopping on the Al2O3 layer. After etching the silicon nitride, the stop layer thickness is reduced from 8 nm to 5 nm (c) Defining the waveguides using E-beam (450 nm wide), etching, and stopping on the thermal oxide layer. Later, device is cladded with 1 µm of PECVD SiO2. (d) False-colored tilted Scanning Electron Microscopy picture of the silicon nitride grating overlay after the waveguide etch.
Fig. 4
Fig. 4 Near-field and far-field measurements and simulations for silicon-nitride/silicon platform. (a) and (c) Far-field measurement and simulations for 1 mm grating with a constant and apodized duty cycle, respectively. (b) and (d) Near-field grating emission profile of constant and apodized duty cycle, respectively. As expected, although the gratings’ lengths are the same, the larger effective aperture of the apodized grating enabled smaller beam divergence.
Fig. 5
Fig. 5 Coupling length for silicon and silicon nitride waveguides. Due to the strong light confinement in the silicon, the coupling length is longer than in silicon nitride waveguide, thus the silicon waveguides exhibit smaller amount of cross-talk and could be tightly packed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P ( z ) = P 0 exp ( 2 α z )
2 α ( z ) = S G 2 ( z ) 1 z 0 z S G 2 ( z ) d z

Metrics