Abstract

The self-organized nanograting manufactured by irradiating the transparent materials with the femtosecond laser has aroused wide interests in photonic applications in recent years. Although the mechanism of nanograting formatting has not yet been fully understood, the essential property of the optical birefringence can be precisely acquired by controlling the energy fluence of the femtosecond laser. In this paper, we proposed a novel application of the self-organized nanograting in a division-of-focal-plane polarimeter. Based on the rigid-coupled-wave algorithm, the optical characteristics of the nanograting and the polarimeter were comprehensively analyzed and discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fundamental precision limits of full Stokes polarimeters based on DoFP polarization cameras for an arbitrary number of acquisitions

Xiaobo Li, Haofeng Hu, François Goudail, and Tiegen Liu
Opt. Express 27(22) 31261-31272 (2019)

Full-Stokes imaging polarimeter using an array of elliptical polarizer

Wei-Liang Hsu, Graham Myhre, Kaushik Balakrishnan, Neal Brock, Mohammed Ibn-Elhaj, and Stanley Pau
Opt. Express 22(3) 3063-3074 (2014)

Misalignment error analysis in polychromatic division of focal plane Stokes polarimeters

Angel Lizana, Juan Campos, Albert Van Eeckhout, and Andrés Marquez
OSA Continuum 2(5) 1565-1575 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Gladish and D. D. Duncan, “Liquid crystal-based Mueller matrix spectral imaging polarimetry for parameterizing mineral structural organization,” Appl. Opt. 56(3), 626–635 (2017).
    [Crossref] [PubMed]
  2. G. Dolgos and J. V. Martins, “Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering,” Opt. Express 22(18), 21972–21990 (2014).
    [Crossref] [PubMed]
  3. T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.
  4. F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).
  5. E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17(2), 472–493 (2009).
    [Crossref] [PubMed]
  6. B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.
  7. A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
    [Crossref] [PubMed]
  8. T. Mu, C. Zhang, Q. Li, and R. Liang, “Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters,” Opt. Express 23(8), 10822–10835 (2015).
    [Crossref] [PubMed]
  9. J. Li, B. Gao, C. Qi, J. Zhu, and X. Hou, “Tests of a compact static Fourier-transform imaging spectropolarimeter,” Opt. Express 22(11), 13014–13021 (2014).
    [Crossref] [PubMed]
  10. C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
    [Crossref] [PubMed]
  11. T. York and V. Gruev, “Characterization of a visible spectrum division-of-focal-plane polarimeter,” Appl. Opt. 51(22), 5392–5400 (2012).
    [Crossref] [PubMed]
  12. S. M. Faris, “Methods for manufacturing micropolarizers,” US, US6384971 (2002).
  13. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
    [Crossref] [PubMed]
  14. V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
    [Crossref]
  15. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
    [Crossref] [PubMed]
  16. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41(7), 1291–1296 (2002).
    [Crossref] [PubMed]
  17. S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
    [Crossref]
  18. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
    [Crossref] [PubMed]
  19. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
    [Crossref] [PubMed]
  20. W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
    [Crossref] [PubMed]
  21. W. L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
    [Crossref] [PubMed]
  22. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  23. D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).
  24. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  25. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
    [Crossref]
  26. V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
    [Crossref] [PubMed]
  27. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  28. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
    [Crossref]
  29. M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
    [Crossref]
  30. M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
    [Crossref] [PubMed]
  31. T. Ohfuchi, M. Sakakura, Y. Yamada, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass,” Opt. Express 25(20), 23738–23754 (2017).
    [Crossref] [PubMed]
  32. C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).
  33. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72(10), 1385–1392 (1982).
    [Crossref]
  34. M. G. Moharam and T. K. Gaylord, “Rigorous couple-wave analysis of grating diffraction-E-mode polorization losses,” J. Opt. Soc. Am. 73(4), 451–455 (1983).
    [Crossref]
  35. B. Guizal and G. Grane, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13(13), 1019–1023 (1996).
  36. G. M. Morris and P. Lalanne, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13(4), 779–784 (1996).
    [Crossref]
  37. M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
    [Crossref]
  38. D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
    [Crossref]
  39. J. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18(15), 15893–15900 (2010).
    [Crossref] [PubMed]
  40. Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
    [Crossref] [PubMed]
  41. D. A. Pommet, E. B. Grann, M. G. Moharam, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [Crossref]
  42. N. Bokor, R. Shechter, N. Davidson, A. A. Friesem, and E. Hasman, “Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength,” Appl. Opt. 40(13), 2076–2080 (2001).
    [Crossref] [PubMed]
  43. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
    [Crossref] [PubMed]
  44. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1208 (1965).
    [Crossref]
  45. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
    [Crossref]

2017 (3)

2016 (2)

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

2015 (3)

2014 (3)

2013 (2)

2012 (3)

2011 (1)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

2010 (3)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

J. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18(15), 15893–15900 (2010).
[Crossref] [PubMed]

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

2006 (4)

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (2)

2000 (2)

D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802–804 (2000).
[Crossref] [PubMed]

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

1996 (3)

1995 (1)

1983 (1)

1982 (1)

1965 (1)

I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1208 (1965).
[Crossref]

Balakrishnan, K.

Benali, A.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Beresna, M.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Bermak, A.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Bokor, N.

Boussaid, F.

Bragheri, F.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Bräuer, R.

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Brock, N.

Bryngdahl, O.

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Chigrinov, V. G.

Chipman, R. A.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Craighead, H. G.

Cremer, F.

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Davidson, N.

Davis, J.

Deby, S.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Deng, Y.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Dereniak, E. L.

Descour, M. R.

Dolgos, G.

Döring, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

Dreisow, F.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Drévillon, B.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Duncan, D. D.

Engheta, N.

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
[Crossref] [PubMed]

V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
[Crossref]

Friesem, A. A.

Fukuda, N.

Gamaly, E. G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Gao, B.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gayet, B.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Gaylord, T. K.

Gecevicius, M.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Gertus, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Gladish, J. C.

Grane, G.

Grann, E. B.

Gruev, V.

Guizal, B.

Haddad, H.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Harnett, C. K.

Hasman, E.

Hegyi, A.

Heinrich, M.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Hou, X.

Hsu, W. L.

Hu, R.

Huang, W. P.

Huang, Y.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Ibn-Elhaj, M.

Jiao, X.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Jong, W. D.

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Juodkazis, S.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Kazansky, P. G.

M. Gecevičius, M. Beresna, and P. G. Kazansky, “Polarization sensitive camera by femtosecond laser nanostructuring,” Opt. Lett. 38(20), 4096–4099 (2013).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Ke, C.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Keil, R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Kemme, S. A.

Kikuta, H.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

Korovin, A. V.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Kroto, S.

LaCasse, C.

Lalanne, P.

Lazarus, N.

Lemaster, D. A.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Li, J.

Li, Q.

Li, X.

Liang, R.

Liang, Y.

Liu, W.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Ma, J.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Mack, R. T.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Malitson, I. H.

I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. A 55(10), 1205–1208 (1965).
[Crossref]

Martini, J.

Martino, A. D.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Martins, J. V.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Middendorf, J. R.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Min, C.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Ming, H.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Miura, K.

Moharam, M. G.

Momeni, M.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

Moreau, F.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Moriwaki, K.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

Morris, G. M.

Mu, J.

Mu, T.

Myhre, G.

Namer, E.

Nazac, A.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Nolte, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Novikova, T.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Ohfuchi, T.

Ortu, A.

Osellame, R.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Pau, S.

Peinado, A.

Peng, W.

Pesche, U.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

Peschel, U.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Phipps, G. S.

Pierangelo, A.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Pommet, D. A.

Qi, C.

Qiu, J.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Raciukaitis, G.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Ramirez, L. P. R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Ratliff, B. M.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Rehbinder, J.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Richter, S.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Sabatke, D. S.

Sakakura, M.

Schechner, Y. Y.

Schmitz, M.

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Schutte, K.

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Shechter, R.

Shimotsuma, Y.

Shwartz, S.

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Spiegel, J. V. D.

V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
[Crossref]

Stankevic, V.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Sweatt, W. C.

Takiya, T.

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Teig, B.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Titus, A. H.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

Toyoda, T.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

Tünnermann, A.

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

Validire, P.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Van der Spiegel, J.

Villeneuve, P. V.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Vizet, J.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

Wang, P.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Wang, X.

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Wei, Y.

Weinheimer, J. J.

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

Xu, C.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Yabe, M.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

Yamada, Y.

Yan, T.

Yoneyama, S.

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

York, T.

Yuan, G.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Yue, Y.

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Zeng, Z.

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

Zhang, C.

Zhang, D.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Zhang, L.

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Zhao, X.

Zhu, J.

Zou, H.

Appl. Opt. (4)

Appl. Phys. B (1)

D. Zhang, P. Wang, X. Jiao, C. Min, G. Yuan, Y. Deng, H. Ming, L. Zhang, and W. Liu, “Polarization properties of subwavelength metallic gratings in visible light band,” Appl. Phys. B 85(1), 139–143 (2006).
[Crossref]

Appl. Phys. Lett. (1)

M. Beresna, M. Gecevičius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98(20), 233901 (2011).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys., A Mater. Sci. Process. 100(1), 1–6 (2010).
[Crossref]

IEEE Trans. Neural Netw. (1)

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[Crossref] [PubMed]

J. Laser Appl. (1)

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, and U. Pesche, “Nanogratings in fused silica: Formation, control, and application,” J. Laser Appl. 24(4), 1040–1045 (2012).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Phys. D (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D 16(5), L97–L100 (2000).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

M. Schmitz, R. Bräuer, and O. Bryngdahl, “Comment on numerical stability of rigorous differential methods of diffraction,” Opt. Commun. 124(124), 1–8 (1996).
[Crossref]

Opt. Eng. (1)

S. Yoneyama, H. Kikuta, and K. Moriwaki, “Simultaneous Observation of Phase-Stepped Photoelastic Fringes Using a Pixelated Microretarder Array,” Opt. Eng. 45(8), 083604 (2006).
[Crossref]

Opt. Express (14)

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776–17787 (2010).
[Crossref] [PubMed]

G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
[Crossref] [PubMed]

W. L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063–3074 (2014).
[Crossref] [PubMed]

W. L. Hsu, J. Davis, K. Balakrishnan, M. Ibn-Elhaj, S. Kroto, N. Brock, and S. Pau, “Polarization microscope using a near infrared full-Stokes imaging polarimeter,” Opt. Express 23(4), 4357–4368 (2015).
[Crossref] [PubMed]

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
[Crossref] [PubMed]

G. Dolgos and J. V. Martins, “Polarized Imaging Nephelometer for in situ airborne measurements of aerosol light scattering,” Opt. Express 22(18), 21972–21990 (2014).
[Crossref] [PubMed]

E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17(2), 472–493 (2009).
[Crossref] [PubMed]

A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
[Crossref] [PubMed]

T. Mu, C. Zhang, Q. Li, and R. Liang, “Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters,” Opt. Express 23(8), 10822–10835 (2015).
[Crossref] [PubMed]

J. Li, B. Gao, C. Qi, J. Zhu, and X. Hou, “Tests of a compact static Fourier-transform imaging spectropolarimeter,” Opt. Express 22(11), 13014–13021 (2014).
[Crossref] [PubMed]

C. Zhang, Q. Li, T. Yan, T. Mu, and Y. Wei, “High throughput static channeled interference imaging spectropolarimeter based on a Savart polariscope,” Opt. Express 24(20), 23314–23332 (2016).
[Crossref] [PubMed]

T. Ohfuchi, M. Sakakura, Y. Yamada, N. Fukuda, T. Takiya, Y. Shimotsuma, and K. Miura, “Polarization imaging camera with a waveplate array fabricated with a femtosecond laser inside silica glass,” Opt. Express 25(20), 23738–23754 (2017).
[Crossref] [PubMed]

J. Mu, X. Li, and W. P. Huang, “Compact Bragg grating with embedded metallic nano-structures,” Opt. Express 18(15), 15893–15900 (2010).
[Crossref] [PubMed]

Y. Liang, W. Peng, R. Hu, and H. Zou, “Extraordinary optical transmission based on subwavelength metallic grating with ellipse walls,” Opt. Express 21(5), 6139–6152 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

F. Cremer, W. D. Jong, and K. Schutte, “Infrared polarization measurements of surface and buried antipersonnel landmines,” Proc. SPIE 4394, 164–175 (2001).

Prog. Mater. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Yue, and J. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications,” Prog. Mater. Sci. 76(1), 154–228 (2016).

Sci. Rep. (1)

V. Stankevič, G. Račiukaitis, F. Bragheri, X. Wang, E. G. Gamaly, R. Osellame, and S. Juodkazis, “Laser printed nano-gratings: orientation and period peculiarities,” Sci. Rep. 7, 39989 (2017).
[Crossref] [PubMed]

Other (5)

C. Xu, C. Ke, J. Ma, Y. Huang, and Z. Zeng, “Full-Stokes polarization imaging method based on the self-organized grating array in fused silica,” Sci. Rep. (to be published).

B. M. Ratliff, D. A. Lemaster, R. T. Mack, P. V. Villeneuve, J. J. Weinheimer, and J. R. Middendorf, “Detection and tracking of RC model aircraft in LWIR microgrid polarimeter data,” in SPIE Optical Engineering + Applications International Society for Optics and Photonics (2011), pp. 25–31.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drévillon, F. Moreau, and A. D. Martino, “Multi-spectral Mueller Matrix Imaging Polarimetry for Studies of Human Tissue,” in Clinical and Translational Biophotonics (2016), paper TTh3B.2.

V. Gruev, J. V. D. Spiegel, and N. Engheta, “Image sensor with focal plane polarization sensitivity,” IEEE International Symposium on Circuits and Systems IEEE, 1028–1031 (2008).
[Crossref]

S. M. Faris, “Methods for manufacturing micropolarizers,” US, US6384971 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic diagram of a DoFP polarimeter based on the self-organized nanograting array.
Fig. 2
Fig. 2 The nanostructure of the self-organized nanograting in the simulations.
Fig. 3
Fig. 3 The refractive index map of the nanograting(a), and the simulated field distribution of TM wave (b) and TE wave (c) in the nanograting.
Fig. 4
Fig. 4 Calculation of the amplitude and phase of the transmitted TE and TM wave of a subwavelength dielectric grating.
Fig. 5
Fig. 5 The wavelength and period dependence of the self-organized grating.
Fig. 6
Fig. 6 The incident angle and temperature dependence of the self-organized grating.
Fig. 7
Fig. 7 Variation of the Müller matrix determinant with the phase delay of the self-organized gratings.
Fig. 8
Fig. 8 Müller matrix shows as a tetrahedron (blue lines) on a Poincaré sphere: (a) for the phase delay of 132 degrees, (b) for the phase delay of 92 degrees, and (c) for the phase delay of 164 degrees. The red curve shows the locus of coordinates on the sphere for a given phase delay.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

[ S 0 ( out ) S 1 ( out ) S 2 ( out ) S 3 ( out ) ]= M i ( Δ,θ,ϕ )[ S 0 ( in ) S 1 ( in ) S 2 ( in ) S 3 ( in ) ]
M i ( Δ,θ,ϕ )=[ M 11 i M 12 i M 13 i M 14 i M 21 i M 22 i M 23 i M 24 i M 31 i M 32 i M 33 i M 34 i M 41 i M 42 i M 43 i M 44 i ]
[ S 0 1 ( out ) S 0 2 ( out ) S 0 3 ( out ) S 0 4 ( out ) ]=[ M 11 1 M 12 1 M 13 1 M 14 1 M 11 2 M 12 2 M 13 2 M 14 2 M 11 3 M 12 3 M 13 3 M 14 3 M 11 4 M 12 4 M 13 4 M 14 4 ][ S 0 ( in ) S 1 ( in ) S 2 ( in ) S 3 ( in ) ]= M det S( in )
M det = M polarizer M grating
M grating ( Δ,θ )=T[ 1 0 0 0 0 1(1cosΔ) sin 2 2θ (1cosΔ)sin2θcos2θ sinΔsin2θ 0 (1cosΔ)sin2θcos2θ 1(1cosΔ) cos 2 2θ sinΔcos2θ 0 sinΔsin2θ sinΔcos2θ cosΔ ]
M polarizor ( ϕ )= 1 2 [ 1 cos2ϕ sin2ϕ 0 cos2ϕ cos 2 2ϕ sin2ϕcos2ϕ 0 sin2ϕ sin2ϕcos2ϕ sin 2 2ϕ 0 0 0 0 0 ]
S(in)= M det 1 S 0 i ( out )= M det * | M det | S 0 i ( out )
E( x )= m e m exp( j 2π Δ m )
D E TE,i =Re( k II,zi k 0 n I cosθ ) | T TE,i | 2
D E TM,i =Re( k II,zi n I k 0 cosθ n II 2 ) | T TM,i | 2
R=2π( n Te n Tm )L/λ
n= 1+ 0.6961663 λ 2 λ 2 0.0684043 2 + 0.4079426 λ 2 λ 2 0.1162414 2 + 0.8974794 λ 2 λ 2 9.896161 2
n=12.84× 10 -6 ×(T300)+1.4574

Metrics