Abstract

We propose a novel all-optical phase shifted quantizer using cascade step-size MMI. The operation principle has been derived in detail. A 3-bit quantizer and a 5-bit quantizer are designed and simulated based on 220-nm SOI platform to verify the feasibility of the scheme, of which the lengths are all below 200 μm. To the best of our knowledge, they have the most compact footprint compared to the existing all-optical quantizers. In the end, the fabrication error analyses of the proposed quantizers are carried out to verify their stability.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation

Zhe Kang, Xianting Zhang, Jinhui Yuan, Xinzhu Sang, Qiang Wu, Gerald Farrell, and Chongxiu Yu
Opt. Express 22(18) 21441-21453 (2014)

CMOS-compatible high-index doped silica waveguide with an embedded silicon-nanocrystal strip for all-optical analog-to-digital conversion

Yuhua Li, Kun Zhu, Zhe Kang, Wai Lok Ho, Roy Davidson, Chao Lu, Brent E. Little, and Sai Tak Chu
Photon. Res. 7(10) 1200-1208 (2019)

Compact polymeric four-wavelength multiplexers based on cascaded step-size MMI for 1G/10G hybrid TDM-PON applications

Shu-Hao Fan, Daniel Guidotti, Hung-Chang Chien, and Gee-Kung Chang
Opt. Express 16(17) 12664-12669 (2008)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
    [Crossref]
  2. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  3. L. Ma, Y. Zhang, H. Zhang, Y. Peng, and M. Yao, “Improvement of all optical ADC based on phase-shifted optical quantization by using a polarization modulator,” in Optical Fiber Communication Conference and Exposition, 2011 and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Academic, 2011), pp. 1 - 3.
    [Crossref]
  4. H. Chi, Z. Li, X. Zhang, S. Zheng, X. Jin, and J. P. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
    [Crossref] [PubMed]
  5. Y. Wang, H. Zhang, Q. Wu, and M. Yao, “Improvement of photonic adc based on phase-shifted optical quantization by using additional modulators,” IEEE Photonics Technol. Lett. 24(7), 566–568 (2012).
    [Crossref]
  6. W. Shile, W. Jian, Z. Lingjuan, Y. Chen, J. Chen, L. Dan, Z. Xilin, and Y. Zuoshan, “Multimode interference coupler based photonic analog-to-digital conversion scheme,” Opt. Lett. 37(17), 3699–3701 (2012).
    [Crossref] [PubMed]
  7. Y. Wang, H. Zhang, and Y. Dou, “Proposal for an all optical analog-to-digital converter based on modal birefringence in a polarization maintaining fiber,” Opt. Eng. 52(2), 5005 (2013).
    [Crossref]
  8. Y. Miyoshi, S. Takagi, S. Namiki, and K.-I. Kitayama, “Multiperiod pm-nolm with dynamic counter-propagating effects compensation for 5-bit all-optical analog-to-digital conversion and its performance evaluations,” J. Lightwave Technol. 28(4), 415–422 (2010).
    [Crossref]
  9. K. Takahashi, H. Matsui, T. Nagashima, and T. Konishi, “Resolution upgrade toward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion,” Opt. Lett. 38(22), 4864–4867 (2013).
    [Crossref] [PubMed]
  10. Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
    [Crossref] [PubMed]
  11. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in n × n multimode interference couplers including phase relations,” Appl. Opt. 33(18), 3905–3911 (1994).
    [Crossref] [PubMed]
  12. M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt. 34(30), 6898–6910 (1995).
    [Crossref] [PubMed]

2016 (1)

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

2013 (2)

Y. Wang, H. Zhang, and Y. Dou, “Proposal for an all optical analog-to-digital converter based on modal birefringence in a polarization maintaining fiber,” Opt. Eng. 52(2), 5005 (2013).
[Crossref]

K. Takahashi, H. Matsui, T. Nagashima, and T. Konishi, “Resolution upgrade toward 6-bit optical quantization using power-to-wavelength conversion for photonic analog-to-digital conversion,” Opt. Lett. 38(22), 4864–4867 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Wang, H. Zhang, Q. Wu, and M. Yao, “Improvement of photonic adc based on phase-shifted optical quantization by using additional modulators,” IEEE Photonics Technol. Lett. 24(7), 566–568 (2012).
[Crossref]

W. Shile, W. Jian, Z. Lingjuan, Y. Chen, J. Chen, L. Dan, Z. Xilin, and Y. Zuoshan, “Multimode interference coupler based photonic analog-to-digital conversion scheme,” Opt. Lett. 37(17), 3699–3701 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2007 (1)

1999 (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

1995 (1)

1994 (1)

Bachmann, M.

Besse, P. A.

Chen, J.

Chen, Y.

Chi, H.

Dan, L.

Dou, Y.

Y. Wang, H. Zhang, and Y. Dou, “Proposal for an all optical analog-to-digital converter based on modal birefringence in a polarization maintaining fiber,” Opt. Eng. 52(2), 5005 (2013).
[Crossref]

Farrell, G.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Jian, W.

Jin, X.

Kang, Z.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Kitayama, K.-I.

Konishi, T.

Li, F.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Li, Z.

Lingjuan, Z.

Lu, C.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Ma, L.

L. Ma, Y. Zhang, H. Zhang, Y. Peng, and M. Yao, “Improvement of all optical ADC based on phase-shifted optical quantization by using a polarization modulator,” in Optical Fiber Communication Conference and Exposition, 2011 and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Academic, 2011), pp. 1 - 3.
[Crossref]

Matsui, H.

Melchior, H.

Miyoshi, Y.

Nagashima, T.

Namiki, S.

Peng, Y.

L. Ma, Y. Zhang, H. Zhang, Y. Peng, and M. Yao, “Improvement of all optical ADC based on phase-shifted optical quantization by using a polarization modulator,” in Optical Fiber Communication Conference and Exposition, 2011 and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Academic, 2011), pp. 1 - 3.
[Crossref]

Sang, X.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Shile, W.

Takagi, S.

Takahashi, K.

Valley, G. C.

Wai, P. K. A.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

Wang, K.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, H. Zhang, and Y. Dou, “Proposal for an all optical analog-to-digital converter based on modal birefringence in a polarization maintaining fiber,” Opt. Eng. 52(2), 5005 (2013).
[Crossref]

Y. Wang, H. Zhang, Q. Wu, and M. Yao, “Improvement of photonic adc based on phase-shifted optical quantization by using additional modulators,” IEEE Photonics Technol. Lett. 24(7), 566–568 (2012).
[Crossref]

Wu, Q.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Y. Wang, H. Zhang, Q. Wu, and M. Yao, “Improvement of photonic adc based on phase-shifted optical quantization by using additional modulators,” IEEE Photonics Technol. Lett. 24(7), 566–568 (2012).
[Crossref]

Xilin, Z.

Yan, B.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Yao, J. P.

Yao, M.

Y. Wang, H. Zhang, Q. Wu, and M. Yao, “Improvement of photonic adc based on phase-shifted optical quantization by using additional modulators,” IEEE Photonics Technol. Lett. 24(7), 566–568 (2012).
[Crossref]

L. Ma, Y. Zhang, H. Zhang, Y. Peng, and M. Yao, “Improvement of all optical ADC based on phase-shifted optical quantization by using a polarization modulator,” in Optical Fiber Communication Conference and Exposition, 2011 and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Academic, 2011), pp. 1 - 3.
[Crossref]

Yaw Tam, H.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Yu, C.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Yuan, J.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Zhang, H.

Y. Wang, H. Zhang, and Y. Dou, “Proposal for an all optical analog-to-digital converter based on modal birefringence in a polarization maintaining fiber,” Opt. Eng. 52(2), 5005 (2013).
[Crossref]

Y. Wang, H. Zhang, Q. Wu, and M. Yao, “Improvement of photonic adc based on phase-shifted optical quantization by using additional modulators,” IEEE Photonics Technol. Lett. 24(7), 566–568 (2012).
[Crossref]

L. Ma, Y. Zhang, H. Zhang, Y. Peng, and M. Yao, “Improvement of all optical ADC based on phase-shifted optical quantization by using a polarization modulator,” in Optical Fiber Communication Conference and Exposition, 2011 and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Academic, 2011), pp. 1 - 3.
[Crossref]

Zhang, X.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

H. Chi, Z. Li, X. Zhang, S. Zheng, X. Jin, and J. P. Yao, “Proposal for photonic quantization with differential encoding using a phase modulator and delay-line interferometers,” Opt. Lett. 36(9), 1629–1631 (2011).
[Crossref] [PubMed]

Zhang, Y.

L. Ma, Y. Zhang, H. Zhang, Y. Peng, and M. Yao, “Improvement of all optical ADC based on phase-shifted optical quantization by using a polarization modulator,” in Optical Fiber Communication Conference and Exposition, 2011 and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Academic, 2011), pp. 1 - 3.
[Crossref]

Zheng, S.

Zhong, K.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Zhou, G.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Zhou, X.

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Zuoshan, Y.

Appl. Opt. (2)

IEEE J. Sel. Areas Comm. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Comm. 17(4), 539–550 (1999).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Wang, H. Zhang, Q. Wu, and M. Yao, “Improvement of photonic adc based on phase-shifted optical quantization by using additional modulators,” IEEE Photonics Technol. Lett. 24(7), 566–568 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Eng. (1)

Y. Wang, H. Zhang, and Y. Dou, “Proposal for an all optical analog-to-digital converter based on modal birefringence in a polarization maintaining fiber,” Opt. Eng. 52(2), 5005 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Sci. Rep. (1)

Z. Kang, J. Yuan, X. Zhang, X. Sang, K. Wang, Q. Wu, B. Yan, F. Li, X. Zhou, K. Zhong, G. Zhou, C. Yu, G. Farrell, C. Lu, H. Yaw Tam, and P. K. A. Wai, “On-chip integratable all-optical quantizer using strong cross-phase modulation in a silicon-organic hybrid slot waveguide,” Sci. Rep. 6(1), 19528 (2016).
[Crossref] [PubMed]

Other (1)

L. Ma, Y. Zhang, H. Zhang, Y. Peng, and M. Yao, “Improvement of all optical ADC based on phase-shifted optical quantization by using a polarization modulator,” in Optical Fiber Communication Conference and Exposition, 2011 and the National Fiber Optic Engineers Conference (OFC/NFOEC) (Academic, 2011), pp. 1 - 3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic diagram and main parameters of the CSS-MMI. (b) Transmission curves of CSS-MMI with K outputs.
Fig. 2
Fig. 2 Schematic setup of OADC scheme using CSS-MMI as quantization unit.
Fig. 3
Fig. 3 (a) Cross section of the silicon nanowaveguide. (b) 3D schematic of 3-bit quantizer using CSS-MMI
Fig. 4
Fig. 4 Optical field distribution when the light (a) Es or (b) Ep is injected into CSS-MMI, respectively. (c)Transmission characteristics of 5 outputs as a function of ΔФsignal and corresponding code table.
Fig. 5
Fig. 5 ENOB and insertion loss of CSS-MMI as a function of (a) width variation, (b) length variation, and (c) operation wavelength.
Fig. 6
Fig. 6 Data processing for the codes simplification.
Fig. 7
Fig. 7 Optical field distribution when the light (a) Ep or (b) Es is injected into CSS-MMI, respectively. (c) Transmission characteristics of 17 outputs as a function of ΔФsignal and corresponding code table.
Fig. 8
Fig. 8 Data processing of 5-bit quantization for the codes simplification.
Fig. 9
Fig. 9 ENOB and insertion loss of CSS-MMI as a function of (a) width variation, (b) length variation, and (c) operation wavelength for 5-bit quantization.

Tables (1)

Tables Icon

Table 1 Main parameters of CSS-MMI for the 3-bit quantizer.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E s = P e j ω t e j ( φ 0 + Δ Φ s i g n a l ) , E p = P e j ω t e j φ 0
[ E p 1 ' E s ' E p 2 ' ] = 2 2 [ 0 2 0 1 0 e j π 2 ] [ E s E p ]
x = K ± 2 2 K W 2
[ E 1 E 2 E 3 E K ] = [ | r ( K + 2 ) , 1 | e i Φ ( K + 2 ) , 1 | r ( K + 2 ) , 2 | e i Φ ( K + 2 ) , 2 | r ( K + 2 ) , 3 | e i Φ ( K + 2 ) , 3 | r ( K + 2 ) , K | e i Φ ( K + 2 ) , K | r K , 1 | e i Φ K , 1 | r K , 2 | e i Φ K , 2 | r K , 3 | e i Φ K , 3 | r K , K | e i Φ K , K | r ( K 2 ) , 1 | e i Φ ( K 2 ) , 1 | r ( K 2 ) , 2 | e i Φ ( K 2 ) , 2 | r ( K 2 ) , 3 | e i Φ ( K 2 ) , 3 | r ( K 2 ) , K | e i Φ ( K 2 ) , K ] [ E p 1 ' E s ' E p 2 ' ]
r a , i 2 = 2 K cos 2 [ a ( 2 K 2 i + 1 ) 2 K π 2 π 2 ] Φ a , i = { [ a 2 + ( 2 i 1 ) 2 ] π 8 K + i π f o r cos [ a ( 2 K 2 i + 1 ) 2 K π 2 π 2 ] > 0 [ a 2 + ( 2 i 1 ) 2 ] π 8 K + ( i + 1 ) π f o r cos [ a ( 2 K 2 i + 1 ) 2 K π 2 π 2 ] < 0
L = { M N 3 L c f o r g e n e r a l s i t u a t i o n M N 3 4 L c f o r c e n t r a l i n j e c t i o n
L 1 = 1 2 3 L c 1 = 2 3 4 L c 1
L 2 = 1 2 K 3 L c 2 = 2 K 3 4 L c 2
I i E p = 2 | E p 1 ' | | E p 2 ' | r ( K + 2 ) , i r ( K 2 ) , i cos ( Φ ( K + 2 ) , i Φ ( K 2 ) , i ) + | E p 1 ' | 2 r ( K +2), i 2 + | E p 2 ' | 2 r ( K 2 ) , i 2 = P K
I i = { 2 P K ( 1 + cos ( Δ Φ s i g n a l i 2 2 π K π 4 + π K ) ) f o r e v e n i 2 P K ( 1 + cos ( Δ Φ s i g n a l + i 1 2 2 π K π 4 + π K ) ) f o r o d d i
E N O B = 20 6.02 log 10 { P F S / 12 1 12 ( P F S 2 K ) 2 + 1 2 K i = 1 2 K 1 Δ s t e p i 2 }

Metrics