Abstract

We report on the design, manufacture, and testing of an ultra-compact telescope for 16 unit (16U) CubeSats for Earth and space observation. This telescope provides 1 arcsec resolution at a 2.9 degree field of view. Dimensions are optimized to 230 × 230 × 330mm3 with a mass of less than 6kg including support structure. Our catadioptric 5-element design consists of a full-aperture corrector, a Mangin primary mirror (PM), a secondary mirror (SM), and a 2-lens field corrector. The focal length is 745mm, and squared-circular aperture has an equivalent diameter of 241mm. The designed modulation transfer function (MTF) is 0.275 for the entire unit including baffles at a Nyquist frequency of 161 cycles/mm for the 450-800nm band. As one of the distinguishing features of our state-of-the-art design, all optical surfaces are spherical to simplify adjustment. For the best thermal stability, all optical elements are produced from fused silica. We describe the details of design, adjustment, and laboratory performance tests for space environments in accordance with the requirements for in-orbit operation onboard Earth-observation micro-satellites to be launched in 2018.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast, wide-field and distortion-free telescope with curved detectors for surveys at ultralow surface brightness

Eduard Muslimov, David Valls-Gabaud, Gérard Lemaître, Emmanuel Hugot, Wilfred Jahn, Simona Lombardo, Xin Wang, Pascal Vola, and Marc Ferrari
Appl. Opt. 56(31) 8639-8647 (2017)

Optics technology for large-aperture space telescopes: from fabrication to final acceptance tests

Isaac Trumper, Pascal Hallibert, Jonathan W. Arenberg, Hideyo Kunieda, Olivier Guyon, H. Philip Stahl, and Dae Wook Kim
Adv. Opt. Photon. 10(3) 644-702 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Jeong, J. W. Nam, K. B. Ahn, I. H. Park, S. W. Kim, J. Lee, H. Lim, S. Brandt, C. Budtz-Jørgensen, A. J. Castro-Tirado, P. Chen, M. H. Cho, J. N. Choi, B. Grossan, M. A. Huang, A. Jung, J. E. Kim, M. B. Kim, Y. W. Kim, E. V. Linder, K. W. Min, G. W. Na, M. I. Panasyuk, J. Ripa, V. Reglero, G. F. Smoot, J. E. Suh, S. Svertilov, N. Vedenkin, and I. Yashin, “Slewing mirror telescope optics for the early observation of UV/optical photons from gamma-ray bursts,” Opt. Express 21(2), 2263–2278 (2013).
    [Crossref] [PubMed]
  2. https://eoportal.org/web/eoportal/satellite-missions
  3. R. N. Wilson, Reflecting Telescope Optics I (Springer, 2007).
  4. https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D1%81%D1%83%D1%80%D1%81-%D0%9F
  5. http://www.telescope-optics.net/three-mirror.htm
  6. V. Yu. Terebizh, “New designs of survey telescopes,” Astron. Nachr. 332(7), 714–742 (2011), doi:, http://www.terebizh.ru/V.Yu.T/publications/2011_01e.pdf .
    [Crossref]
  7. http://www.telescope-optics.net/catadioptric.htm
  8. V. Yu. Terebizh, 2007, “Wide-field Optical Telescopes”. Astronomy: Traditions, Present, and Future. St.-Petersburg State University Publishers, 2007, 362–395.

2013 (1)

2011 (1)

V. Yu. Terebizh, “New designs of survey telescopes,” Astron. Nachr. 332(7), 714–742 (2011), doi:, http://www.terebizh.ru/V.Yu.T/publications/2011_01e.pdf .
[Crossref]

Ahn, K. B.

Brandt, S.

Budtz-Jørgensen, C.

Castro-Tirado, A. J.

Chen, P.

Cho, M. H.

Choi, J. N.

Grossan, B.

Huang, M. A.

Jeong, S.

Jung, A.

Kim, J. E.

Kim, M. B.

Kim, S. W.

Kim, Y. W.

Lee, J.

Lim, H.

Linder, E. V.

Min, K. W.

Na, G. W.

Nam, J. W.

Panasyuk, M. I.

Park, I. H.

Reglero, V.

Ripa, J.

Smoot, G. F.

Suh, J. E.

Svertilov, S.

Terebizh, V. Yu.

V. Yu. Terebizh, “New designs of survey telescopes,” Astron. Nachr. 332(7), 714–742 (2011), doi:, http://www.terebizh.ru/V.Yu.T/publications/2011_01e.pdf .
[Crossref]

Vedenkin, N.

Yashin, I.

Astron. Nachr. (1)

V. Yu. Terebizh, “New designs of survey telescopes,” Astron. Nachr. 332(7), 714–742 (2011), doi:, http://www.terebizh.ru/V.Yu.T/publications/2011_01e.pdf .
[Crossref]

Opt. Express (1)

Other (6)

http://www.telescope-optics.net/catadioptric.htm

V. Yu. Terebizh, 2007, “Wide-field Optical Telescopes”. Astronomy: Traditions, Present, and Future. St.-Petersburg State University Publishers, 2007, 362–395.

https://eoportal.org/web/eoportal/satellite-missions

R. N. Wilson, Reflecting Telescope Optics I (Springer, 2007).

https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D1%81%D1%83%D1%80%D1%81-%D0%9F

http://www.telescope-optics.net/three-mirror.htm

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 16U CubeSat with the telescope; mounting scheme of the telescope onto the satellite.
Fig. 2
Fig. 2 Prototype telescope (optimized Houghton) and its performance.
Fig. 3
Fig. 3 a) Telescope optical scheme; b) aperture, lens and baffles; c) telescope performance MTF. All obscuration factors are included in the model: central obscuration, squared shape of optical elements and baffle obscuration.
Fig. 4
Fig. 4 Telescope optomechanical design and fabricated setup.
Fig. 5
Fig. 5 Engineering Model test and adjustment setup. a) target with light source at focal plane of collimator; b) focusing setup with microscope; c) common view of adjustment setup; d) schema of adjustment setup.
Fig. 6
Fig. 6 a) Secondary mirror adjustment tools; b) 1st lens adjustment tools
Fig. 7
Fig. 7 EM Vibration test. a) performance before test; b) test setup and conditions; c) lowest natural frequency; d) performance after test.
Fig. 8
Fig. 8 Telescope EM Thermal-vacuum test.

Tables (1)

Tables Icon

Table 1 Design parameters of the Telescope

Metrics