Abstract

We theoretically demonstrate a giant power enhancement effect for a line current source in a ε-near-zero (ENZ) two-dimensional (2D) shell with proper physical dimensions. Compared with the traditional high-ε dielectric approach, the ENZ scheme has the prominent advantage that the radiation performance is less sensitive to the outer radius of the shell, which is critically important for real applications where micro-nano fabrications are often involved. The enhancing performance is independent on the position of the source inside the ENZ shell and could be substantially strengthened by incorporating more sources, while the quasi-omnidirectional radiation pattern could be managed to have negligible variance, as evidenced by a particular example with an inner radius of the shell equal to 0.156λ0. Compared with the single source case, two identical sources with a phase difference less than 134° will raise the total radiation power more than 4 folds and the maxima will be about 30 when they are in phase. The field analysis shows that this quasi-isotropic radiation enhancement is mainly contributed by the amplification of the isotropic zeroth order mode radiation while the higher orders with anisotropic emission patterns are effectively suppressed by the specifically designed ENZ shell. In the end, a practicable device employing 4H-silicon carbide (4H-SiC) naturally available with ENZ properties in the mid-infrared regime is numerically proposed, which could provide more than 10 times of radiation enhancement through optimizing the permittivity of the inner dielectric cylinder. These results may find very important applications in the design of novel devices for mid-infrared photon sources or detectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Giant omnidirectional radiation enhancement via radially anisotropic zero-index metamaterial

Neng Wang, Huajin Chen, Wanli Lu, Shiyang Liu, and Zhifang Lin
Opt. Express 21(20) 23712-23723 (2013)

Enhancing and suppressing radiation with some permeability-near-zero structures

Yi Jin and Sailing He
Opt. Express 18(16) 16587-16593 (2010)

Half-sized cylindrical invisibility cloaks using double near zero slabs with realistic material size and properties

Reza Dehbashi, Konstanty S. Bialkowski, and Amin M. Abbosh
Opt. Express 25(20) 24486-24500 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  2. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]
  3. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
    [Crossref] [PubMed]
  4. M. H. Javani and M. I. Stockman, “Real and Imaginary Properties of Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
    [Crossref] [PubMed]
  5. V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
    [Crossref]
  6. M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B 77(23), 233104 (2008).
    [Crossref]
  7. Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B 81(8), 085117 (2010).
    [Crossref]
  8. Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
    [Crossref] [PubMed]
  9. M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
    [Crossref]
  10. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
    [Crossref] [PubMed]
  11. J. Xu, G. Song, Z. Zhang, Y. Yang, H. Chen, M. S. Zubairy, and S. Zhu, “Unidirectional single-photon generation via matched zero-index metamaterials,” Phys. Rev. B 94, 220103(R) (2016).
    [Crossref]
  12. Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
    [Crossref]
  13. Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett. 94(4), 044107 (2009).
    [Crossref]
  14. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
    [Crossref]
  15. S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
    [Crossref]
  16. S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
    [Crossref] [PubMed]
  17. P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
    [Crossref]
  18. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
    [Crossref] [PubMed]
  19. N. Wang, H. Chen, W. Lu, S. Liu, and Z. Lin, “Giant omnidirectional radiation enhancement via radially anisotropic zero-index metamaterial,” Opt. Express 21(20), 23712–23723 (2013).
    [Crossref] [PubMed]
  20. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).
  21. T. Erdogan, K. G. Sullivan, and D. G. Hall, “Enhancement and inhibition of radiation in cylindrically symmetric, periodic structures,” J. Opt. Soc. Am. B 10(2), 391–398 (1993).
    [Crossref]
  22. J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw-Hill, 2002).
  23. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
    [Crossref] [PubMed]
  24. J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–345 (2016).
    [Crossref]
  25. T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
    [Crossref]
  26. J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

2017 (1)

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

2016 (3)

M. H. Javani and M. I. Stockman, “Real and Imaginary Properties of Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–345 (2016).
[Crossref]

2014 (2)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

2013 (2)

2012 (1)

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

2011 (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

2010 (3)

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B 81(8), 085117 (2010).
[Crossref]

Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
[Crossref] [PubMed]

2009 (1)

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett. 94(4), 044107 (2009).
[Crossref]

2008 (4)

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B 77(23), 233104 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

2007 (2)

M. G. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

2005 (1)

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

1999 (1)

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

1993 (1)

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Alù, M. G.

M. G. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Bai, P.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Belov, P. A.

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B 77(23), 233104 (2008).
[Crossref]

Beruete, M.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Bezares, F. J.

Boltasseva, A.

Caglayan, H.

Caldwell, J. D.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–345 (2016).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Capolino, F.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Chan, C. T.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Chen, H.

Chen, X.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett. 94(4), 044107 (2009).
[Crossref]

Cheng, Q.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Christiansen, J.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Cui, T. J.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Cummer, S. A.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Della Villa, A.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Ding, K.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Dutta, A.

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Ellis, C. T.

Engheta, N.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–345 (2016).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. G. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

Enoch, S.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Erdogan, T.

Galdi, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Gentselev, A.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Giannini, V.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Giles, A. J.

Glembocki, O. J.

J. Kim, A. Dutta, G. V. Naik, A. J. Giles, F. J. Bezares, C. T. Ellis, J. G. Tischler, A. M. Mahmoud, H. Caglayan, O. J. Glembocki, A. V. Kildishev, J. D. Caldwell, A. Boltasseva, and N. Engheta, “Role of epsilon-near-zero substrates in the optical response of plasmonic antennas,” Optica 3(3), 339–345 (2016).
[Crossref]

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Gregory, R.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Hall, D. G.

Hand, T.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Hang, Z. H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Hao, J.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

He, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref] [PubMed]

Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
[Crossref] [PubMed]

He, S. L.

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B 81(8), 085117 (2010).
[Crossref]

Huang, X.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Huangfu, J. T.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Javani, M. H.

M. H. Javani and M. I. Stockman, “Real and Imaginary Properties of Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

Jiang, T.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Jiang, W. X.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Jin, Y.

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B 81(8), 085117 (2010).
[Crossref]

Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18(16), 16587–16593 (2010).
[Crossref] [PubMed]

Kildishev, A. V.

Kim, J.

Kong, J. A.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Kuznetsov, S.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Lai, Y.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Lin, Z.

Lindsay, L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Liu, R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Liu, S.

Lu, W.

Luo, J.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Ma, Y.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

Ma, Y. G.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett. 94(4), 044107 (2009).
[Crossref]

Mahmoud, A. M.

Maier, S. A.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Mock, J. J.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Naik, G. V.

Ong, C. K.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett. 94(4), 044107 (2009).
[Crossref]

Pacheco-Peña, V.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Pierro, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Powell, A. R.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Qiu, M.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

Ran, L. X.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Reinecke, T. L.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Salandrino, A.

M. G. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Shen, L. F.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

Silveirinha, M. G.

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B 77(23), 233104 (2008).
[Crossref]

M. G. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Smith, D. R.

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

Stockman, M. I.

M. H. Javani and M. I. Stockman, “Real and Imaginary Properties of Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

Sullivan, K. G.

Tayeb, G.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

Tischler, J. G.

Tiwald, T. E.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Vurgaftman, I.

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Wang, G.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Wang, N.

Wang, P.

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett. 94(4), 044107 (2009).
[Crossref]

Wetteroth, T.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Wilson, S.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Woollam, J. A.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Wu, Y.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Yan, W.

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Yuan, Y.

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

Zhang, P.

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B 81(8), 085117 (2010).
[Crossref]

Zhang, Z. Q.

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Zheng, H.

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Zhong, S.

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref] [PubMed]

Zollner, S.

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Appl. Phys. Lett. (3)

Y. G. Ma, P. Wang, X. Chen, and C. K. Ong, “Near-field plane-wave-like beam emitting antenna fabricated by anisotropic metamaterial,” Appl. Phys. Lett. 94(4), 044107 (2009).
[Crossref]

J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96(10), 101109 (2010).
[Crossref]

S. Zhong, Y. Ma, and S. He, “Perfect absorption in ultrathin anisotropic ε-near-zero metamaterials,” Appl. Phys. Lett. 105(2), 023504 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanophotonics (1)

J. D. Caldwell, L. Lindsay, V. Giannini, I. Vurgaftman, T. L. Reinecke, S. A. Maier, and O. J. Glembocki, “Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons,” Nanophotonics 4, 44–68 (2014).

Nat. Mater. (1)

X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10(8), 582–586 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

Phys. Rev. A (2)

Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77(5), 053821 (2008).
[Crossref]

P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, and Y. Lai, “Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss,” Phys. Rev. A 94(6), 063841 (2016).
[Crossref]

Phys. Rev. Appl. (1)

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Phys. Rev. B (5)

M. G. Silveirinha and P. A. Belov, “Spatial dispersion in lattices of split ring resonators with permeability near zero,” Phys. Rev. B 77(23), 233104 (2008).
[Crossref]

Y. Jin, P. Zhang, and S. L. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B 81(8), 085117 (2010).
[Crossref]

M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).
[Crossref]

M. G. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

T. E. Tiwald, J. A. Woollam, S. Zollner, J. Christiansen, R. Gregory, T. Wetteroth, S. Wilson, and A. R. Powell, “Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry,” Phys. Rev. B 60(16), 11464–11474 (1999).
[Crossref]

Phys. Rev. Lett. (5)

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice,” Phys. Rev. Lett. 94(18), 183903 (2005).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).
[Crossref] [PubMed]

M. H. Javani and M. I. Stockman, “Real and Imaginary Properties of Epsilon-Near-Zero Materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref] [PubMed]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108(21), 213903 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Zhong and S. He, “Ultrathin and lightweight microwave absorbers made of mu-near-zero metamaterials,” Sci. Rep. 3(1), 2083 (2013).
[Crossref] [PubMed]

Other (3)

J. Xu, G. Song, Z. Zhang, Y. Yang, H. Chen, M. S. Zubairy, and S. Zhu, “Unidirectional single-photon generation via matched zero-index metamaterials,” Phys. Rev. B 94, 220103(R) (2016).
[Crossref]

W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995).

J. D. Kraus and R. J. Marhefka, Antennas: For All Applications (McGraw-Hill, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the theoretical model. Region 1 is a normal dielectric cylinder with permittivity ε1, region 2 is an ENZ ring with inner radius b and outer radius a, and region 3 is air. A line current source I (black point) with the time harmonic factor eiωt is located at (s1, ϕ1).
Fig. 2
Fig. 2 P as a function of b/λ0 for the ENZ ring with outer radius a = 1.4λ0. The inner dielectric is air and the source is at the center of the system in this case. The permittivity ε2 is 0.001, 0.001 + 0.01i and 0.001 + 0.1i for black, red and blue lines, respectively.
Fig. 3
Fig. 3 A 2D map of power enhancement factor as a function of b/λ0 and a/λ0 for the (a) ENZ (0.001 + 0.01i) shell and (b) high-ε dielectric (14 + 0.01i) shell, respectively. (c) Maximum enhancement factor and (d) corresponding inner radius b of shell to get maximum the enhancement as the function of outer radius a for the ENZ (black curve) and high-ε dielectric (red curve) shells.
Fig. 4
Fig. 4 Numerical simulation results of the real part of electric field Ez radiated by a current source (1 Ampere) in (a) free space, (b) an ENZ shell (a = 1.385λ0, b = 0.661λ0) and (c) a high-ε dielectric shell (a = 1.385λ0, b = 0.383λ0), respectively. (d) Amplitude and (e) phase distributions of electric fields on the + x-axis.
Fig. 5
Fig. 5 (a) The coefficients of the m-th order wave components and (b) the normalized power density plotted as a function of the polar radiation angle for a source with or without the ENZ shell. The separation between the source and the shell center is 0.15λ0, and the ENZ shell has permittivity of 0.001 + 0.01i, inner and outer radius of 0.156λ0 and 0.948λ0, respectively.
Fig. 6
Fig. 6 The polar-plot of the normalized power density by two sources (a) in phase and (b) with a 130° phase difference with and without the ENZ shell, respectively. The numerical simulation results of the real parts of electric field Ez radiated by the two sources (b, c) in phase and (e, f) with a 130° phase difference. The other parameters are (s1, ϕ1) = (0.1λ0, 0°), (s2, ϕ2) = (0.15λ0, 160°), a = 0.948λ0, b = 0.156λ0 and ε2z = 0.001 + 0.01i.
Fig. 7
Fig. 7 (a) The permittivity of 4H-SiC material. The 4H-SiC dielectric function has the ENZ point at 10.3 μm with a small loss part Im(ϵ) = 0.03. (b) The analytical power enhancement factor spectrum of the 4H-SiC shell with the parameters shown in the inset. The line-current source is center-positioned.
Fig. 8
Fig. 8 (a) Power enhancement factor as a function of the permittivity ε1 of the inner dielectric and the inner radius b/λ0 of the ENZ shell at λ0 = 10.3 μm and a = 12.463 μm. (b) Power enhancement factor for tunable permittivity ε1 from 3 to 4, with the dimensions of the shell fixed as shown in the inset of Fig. 7(b).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E 2z = m [ B m J m ( k 2 ρ)+ C m H m ( k 2 ρ)] e imϕ ,b<ρ<a,
E z = H 0 ( k 1 | ρ s 1 |),
E z = m H m ( k 1 s 1 ) J m ( k 1 ρ) e imϕ ,ρ< s 1 E z = m J m ( k 1 s 1 ) H m ( k 1 ρ) e imϕ ,ρ> s 1
E 1z = m [ J m ( k 1 s 1 ) H m ( k 1 ρ)+ A m J m ( k 1 ρ)] e imϕ ,
E 3z = m D m H m ( k 0 ρ) e imϕ ,ρa,
D m = J m ( k 1 s 1 ) p m p m ' ,
q m = k 0 H m ( k 2 a) H m ' ( k 0 a) k 2 H m ' ( k 2 a) H m ( k 0 a) k 2 H m ( k 0 a) J m ' ( k 2 a) k 0 H m ' ( k 0 a) J m ( k 2 a) , p m = k 2 H m ( k 2 a) J m ' ( k 2 a) k 2 H m ' ( k 2 a) J m ( k 2 a) k 2 H m ( k 0 a) J m ' ( k 2 a) k 0 H m ' ( k 0 a) J m ( k 2 a) , p m ' = k 1 H m ( k 1 b) J m ' ( k 1 b) k 1 H m ' ( k 1 b) J m ( k 1 b) k 1 [ H m ( k 2 b)+ q m J m ( k 2 b)] J m ' ( k 1 b) k 2 [ H m ' ( k 2 b)+ q m J m ' ( k 2 b)] J m ( k 1 b) .
S ρ (ρ,ϕ)=Re( E z × H ϕ * )/2 with H ϕ =i/(ω μ 0 ) E z /ρ.
E 3z = m D m ' H m ( k 0 ρ) e imϕ with D m ' = p m p m ' [ J m ( k 0 s 1 )+ J m ( k 0 s 2 ) e i(m ϕ 2 +Δφ) ].
ε(ω)= ε (1+ ω LO 2 ω TO 2 ω TO 2 ω 2 iωγ )

Metrics