Abstract

High-speed and high-accuracy three-dimensional (3D) measurement is of great importance in numerous areas. Recently proposed binary defocusing techniques have enabled breakthroughs in speed by utilizing 1-bit binary fringe patterns with the advanced digital light processing (DLP) projection platform. Meanwhile, much research has also been conducted to enhance measurement accuracy by temporally or spatially modulating the binary patterns. However, it is still challenging to use such techniques for measuring objects with high dynamic range (HDR) of surface reflectivity such as metal parts. To this end, we propose a novel HDR 3D measurement method based on spectral modulation and hyperspectral imaging. By modulating the illumination light with a spectral filter, and acquiring the fringe patterns with a hyperspectral camera, high-contrast HDR fringe imaging and 3D measurement can finally be achieved. Experiments were carried out to demonstrate the effectiveness of the proposed strategy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High dynamic range 3D shape measurement based on the intensity response function of a camera

Liang Zhang, Qian Chen, Chao Zuo, and Shijie Feng
Appl. Opt. 57(6) 1378-1386 (2018)

High dynamic range real-time 3D shape measurement

Chufan Jiang, Tyler Bell, and Song Zhang
Opt. Express 24(7) 7337-7346 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Structured-light 3d surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
    [Crossref]
  2. S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
    [Crossref]
  3. K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Computer Vision and Image Understanding 114, 1303–1316 (2010).
    [Crossref]
  4. S.W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Molecular biotechnology 16, 127–149 (2000).
    [Crossref] [PubMed]
  5. O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Advances in Optics and Photonics 10, 111–179 (2018).
    [Crossref]
  6. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. 5, 1205–1215 (1999).
    [Crossref]
  7. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
    [Crossref]
  8. X. Su and Q. Zhang, “Dynamic 3-d shape measurement method: A review,” Opt. Laser. Eng 48, 191–204 (2010).
    [Crossref]
  9. B. Li and S. Zhang, “Superfast high-resolution absolute 3d recovery of a stabilized flapping flight process,” Opt. Express 25, 27270–27282 (2017).
    [Crossref] [PubMed]
  10. Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3d absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21, 5822–5832 (2013).
    [Crossref] [PubMed]
  11. G. H. Liu, X. Y. Liu, and Q. Y. Feng, “3D shape measurement of objects with high dynamic range of surface reflectivity,” Appl. Opt. 50, 4557–4565 (2011).
    [Crossref] [PubMed]
  12. L. Zhang, Q. Chen, C. Zuo, and S. Feng, “High dynamic range 3d shape measurement based on the intensity response function of a camera,” Appl. Opt. 57, 1378–1386 (2018).
    [Crossref] [PubMed]
  13. L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
    [Crossref]
  14. D. Li and J. Kofman, “Adaptive fringe-pattern projection for image saturation avoidance in 3d surface-shape measurement,” Opt. Express 22, 9887–9901 (2014).
    [Crossref] [PubMed]
  15. H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
    [Crossref] [PubMed]
  16. B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014).
    [Crossref] [PubMed]
  17. R. Benveniste and C. Unsalan, “A color invariant for line stripe based range scanners,” Comput. J. 54, 738–753 (2011).
    [Crossref]
  18. R. Benveniste and C. Unsalan, “Nary coded structured light-based range scanners using color invariants,” J. Real-Time Image Pr. 9, 359–377 (2014).
    [Crossref]
  19. D. Malacara, ed., Optical Shop Testing (John Wiley and Sons, New York, NY, 2007), 3rd ed.
    [Crossref]
  20. H. Guo, H. He, and M. Chen, “Gamma correction for digital fringe projection profilometry,” Appl. Opt. 43, 2906–2914 (2004).
    [Crossref] [PubMed]
  21. B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
    [Crossref] [PubMed]
  22. M. Zhang, Q. Chen, T. Tao, S. Feng, Y. Hu, H. Li, and C. Zuo, “Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection,” Opt. Express 25, 20381–20400 (2017).
    [Crossref] [PubMed]
  23. Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19, 5149–5155 (2011).
    [Crossref] [PubMed]
  24. Y. Wang, C. Jiang, and S. Zhang, “Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3d shape measurement,” Opt. Express 25, 30177–30188 (2017).
    [Crossref] [PubMed]
  25. Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).
    [Crossref] [PubMed]

2018 (2)

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Advances in Optics and Photonics 10, 111–179 (2018).
[Crossref]

L. Zhang, Q. Chen, C. Zuo, and S. Feng, “High dynamic range 3d shape measurement based on the intensity response function of a camera,” Appl. Opt. 57, 1378–1386 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (1)

2014 (3)

2013 (1)

2011 (6)

2010 (3)

K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Computer Vision and Image Understanding 114, 1303–1316 (2010).
[Crossref]

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3-d shape measurement method: A review,” Opt. Laser. Eng 48, 191–204 (2010).
[Crossref]

2009 (2)

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
[Crossref] [PubMed]

2004 (1)

2000 (1)

S.W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Molecular biotechnology 16, 127–149 (2000).
[Crossref] [PubMed]

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. 5, 1205–1215 (1999).
[Crossref]

Ambrosch, K.

K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Computer Vision and Image Understanding 114, 1303–1316 (2010).
[Crossref]

Andilla, J.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Advances in Optics and Photonics 10, 111–179 (2018).
[Crossref]

Asundi, A.

Benveniste, R.

R. Benveniste and C. Unsalan, “Nary coded structured light-based range scanners using color invariants,” J. Real-Time Image Pr. 9, 359–377 (2014).
[Crossref]

R. Benveniste and C. Unsalan, “A color invariant for line stripe based range scanners,” Comput. J. 54, 738–753 (2011).
[Crossref]

Chen, M.

Chen, Q.

Chen, Z.

Dai, J.

Droeschel, D.

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

Efimov, I. R.

Ekstrand, L.

Y. Xu, L. Ekstrand, J. Dai, and S. Zhang, “Phase error compensation for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 50, 2572–2581 (2011).
[Crossref] [PubMed]

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

Feng, Q. Y.

Feng, S.

Fuchs, S.

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

Gao, J.

Geng, J.

Gorthi, S.

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

Gualda, E. J.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Advances in Optics and Photonics 10, 111–179 (2018).
[Crossref]

Guo, H.

He, H.

He, Y.

Hertzberg, J.

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

Holz, D.

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

Hu, Y.

Huang, L.

Jiang, C.

Kemao, Q.

Kofman, J.

Kubinger, W.

K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Computer Vision and Image Understanding 114, 1303–1316 (2010).
[Crossref]

Laughner, J. I.

Li, B.

Li, D.

Li, H.

Liang, R.

Lin, H.

Liu, G. H.

Liu, J.

Liu, X. Y.

Loza-Alvarez, P.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Advances in Optics and Photonics 10, 111–179 (2018).
[Crossref]

Malis, E.

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

May, S.

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

Mei, Q.

Nuchter, A.

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

Olarte, O. E.

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Advances in Optics and Photonics 10, 111–179 (2018).
[Crossref]

Paddock, S.W.

S.W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Molecular biotechnology 16, 127–149 (2000).
[Crossref] [PubMed]

Pan, B.

Rastogi, P.

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

Rodriguez, J. J.

Salahieh, B.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. 5, 1205–1215 (1999).
[Crossref]

Su, X.

X. Su and Q. Zhang, “Dynamic 3-d shape measurement method: A review,” Opt. Laser. Eng 48, 191–204 (2010).
[Crossref]

Tao, T.

Unsalan, C.

R. Benveniste and C. Unsalan, “Nary coded structured light-based range scanners using color invariants,” J. Real-Time Image Pr. 9, 359–377 (2014).
[Crossref]

R. Benveniste and C. Unsalan, “A color invariant for line stripe based range scanners,” Comput. J. 54, 738–753 (2011).
[Crossref]

Wang, X.

Wang, Y.

Xu, Y.

Zhang, L.

Zhang, M.

Zhang, Q.

X. Su and Q. Zhang, “Dynamic 3-d shape measurement method: A review,” Opt. Laser. Eng 48, 191–204 (2010).
[Crossref]

Zhang, S.

Zuo, C.

Adv. Opt. Photon. (1)

Advances in Optics and Photonics (1)

O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, “Light-sheet microscopy: a tutorial,” Advances in Optics and Photonics 10, 111–179 (2018).
[Crossref]

Appl. Opt. (4)

Comput. J. (1)

R. Benveniste and C. Unsalan, “A color invariant for line stripe based range scanners,” Comput. J. 54, 738–753 (2011).
[Crossref]

Computer Vision and Image Understanding (1)

K. Ambrosch and W. Kubinger, “Accurate hardware-based stereo vision,” Computer Vision and Image Understanding 114, 1303–1316 (2010).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. 5, 1205–1215 (1999).
[Crossref]

J. Field Robotics (1)

S. May, D. Droeschel, D. Holz, S. Fuchs, E. Malis, A. Nuchter, and J. Hertzberg, “Three-dimensional mapping with time-of-flight cameras,” J. Field Robotics 26, 934–965 (2009).
[Crossref]

J. Real-Time Image Pr. (1)

R. Benveniste and C. Unsalan, “Nary coded structured light-based range scanners using color invariants,” J. Real-Time Image Pr. 9, 359–377 (2014).
[Crossref]

Molecular biotechnology (1)

S.W. Paddock, “Principles and practices of laser scanning confocal microscopy,” Molecular biotechnology 16, 127–149 (2000).
[Crossref] [PubMed]

Opt. Eng. (1)

L. Ekstrand and S. Zhang, “Auto-exposure for three-dimensional shape measurement with a digital-light-processing projector,” Opt. Eng. 50, 123603 (2011).
[Crossref]

Opt. Express (8)

D. Li and J. Kofman, “Adaptive fringe-pattern projection for image saturation avoidance in 3d surface-shape measurement,” Opt. Express 22, 9887–9901 (2014).
[Crossref] [PubMed]

H. Lin, J. Gao, Q. Mei, Y. He, J. Liu, and X. Wang, “Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement,” Opt. Express 24, 7703–7718 (2016).
[Crossref] [PubMed]

B. Salahieh, Z. Chen, J. J. Rodriguez, and R. Liang, “Multi-polarization fringe projection imaging for high dynamic range objects,” Opt. Express 22, 10064–10071 (2014).
[Crossref] [PubMed]

B. Li and S. Zhang, “Superfast high-resolution absolute 3d recovery of a stabilized flapping flight process,” Opt. Express 25, 27270–27282 (2017).
[Crossref] [PubMed]

Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3d absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21, 5822–5832 (2013).
[Crossref] [PubMed]

M. Zhang, Q. Chen, T. Tao, S. Feng, Y. Hu, H. Li, and C. Zuo, “Robust and efficient multi-frequency temporal phase unwrapping: optimal fringe frequency and pattern sequence selection,” Opt. Express 25, 20381–20400 (2017).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19, 5149–5155 (2011).
[Crossref] [PubMed]

Y. Wang, C. Jiang, and S. Zhang, “Double-pattern triangular pulse width modulation technique for high-accuracy high-speed 3d shape measurement,” Opt. Express 25, 30177–30188 (2017).
[Crossref] [PubMed]

Opt. Laser. Eng (1)

X. Su and Q. Zhang, “Dynamic 3-d shape measurement method: A review,” Opt. Laser. Eng 48, 191–204 (2010).
[Crossref]

Opt. Laser. Eng. (1)

S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Laser. Eng. 48, 133–140 (2010).
[Crossref]

Opt. Lett. (1)

Other (1)

D. Malacara, ed., Optical Shop Testing (John Wiley and Sons, New York, NY, 2007), 3rd ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Square binary method and the double-pattern OPWM method. (a)–(b) The patterns; (c)–(d) Corresponding spectrum.
Fig. 2
Fig. 2 The proposed prinple for HDR 3D imaging.
Fig. 3
Fig. 3 (a) Light spectral modulation curves in different steps; (b) Intensity distribution for different channels.
Fig. 4
Fig. 4 Steps for channels merging and HDR 3D imaging.
Fig. 5
Fig. 5 Intensity distribution of different modulation methods. (a) Utilizing the green LED for illumination; (b) Utilizing a narrow-band spectral filter with λc1 = 543.5 nm, FWHM = 10 nm; (c) Utilizing the blue LED for illumination; (d) Utilizing a narrow-band spectral filter with λc2 = 460 nm, FWHM = 10 nm.
Fig. 6
Fig. 6 3D reconstruction results for different spectral channel when measuring a metal part. (a)–(d) Four representative fringe pattern from four different channels 4, 5, 6, 7; (e)–(h) The corresponding reconstructed 3D results; (i)–(l) The zoom-in 3D plots.
Fig. 7
Fig. 7 3D reconstruction results for different spectral channel when measuring a controller. (a)–(d) Four representative fringe pattern from different channels; (e)–(h) The corresponding reconstructed 3D results; (i)–(l) The zoom-in 3D plots.
Fig. 8
Fig. 8 HDR 3D reconstruction results. (a)The HDR composite pattern of the metal part; (b)The texture obtained from the fourth channel fringes; (c)–(d) The HDR composite pattern and texture of the controller; (e)–(h) The reconstructed 3D results and related zoom-in plots.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I n ( x , y ) = A ( x , y ) + B ( x , y ) cos ( Φ + δ n ) , n = 1 , 2 , 3 , , N ,
ϕ ( x , y ) = tan 1 [ n = 1 N I n ( x , y ) sin δ n n = 1 N I n ( x , y ) cos δ n ] .
T ( x , y ) = A ( x , y ) + B ( x , y ) .
G ( x , y ) = 1 2 π δ 2 exp [ x 2 + y 2 2 δ 2 ] ,
I k , n ( x , y ) = λ L ( λ ) R ( λ ) C ( λ ) d λ ,

Metrics