Abstract

Shack-Hartmann wavefront sensors (SHWFSs) usually have fixed subaperture areas on the detector, in order to fix the minimum and maximum amounts of wavefront departure, or the dynamic range of measurement. We introduce an active approach, named Adaptive Shack Hartmann Wavefront Sensor (A-SHWFS). A-SHWFS is used to reconfigure detection subaperture areas by either blocking or unblocking desired lenslets by using an electronically modulated mask. This mask either increases or decreases the measurable aberration magnitude by placing a liquid crystal display (LCD) panel in front of the lenslet array. Depending on which control signal that is sent to the LCD, the variable, application-dependent blocking pattern (horizontal, vertical, diagonal, uneven) makes this an adaptive and efficient sensor with a variable dynamic range of measurement. This scheme is also useful for regional blocking, which occurs when the wavefront is severely aberrated in a limited region.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Shack–Hartmann wavefront sensor with large dynamic range by adaptive spot search method

Hironobu Shinto, Yusuke Saita, and Takanori Nomura
Appl. Opt. 55(20) 5413-5418 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
    [PubMed]
  2. P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
    [Crossref]
  3. J. Novak, P. Novak, and A. Miks, “Application of Shack-Hartmann wavefront sensor for testing optical systems,” Proc. SPIE 6609, 660915 (2007).
    [Crossref]
  4. L. N. Thibos, “Principles of Hartmann-Shack Aberrometry,” in Vision Science and its Applications, Vol. 35 of 2000 OSA Technical Digest Series (Optical Society of America, 2000), paper NW6.
  5. T. L. Bruno, A. Wirth, and A. J. Jankevics, “Applying Hartmann wavefront-sensing technology to precision optical testing of the Hubble Space Telescope correctors,” Proc. SPIE 1920, Active and Adaptive Optical Components and Systems II (25 August 1993).
  6. J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23(13), 995–997 (1998).
    [Crossref] [PubMed]
  7. M. C. Roggemann and T. J. Schulz, “Algorithm to increase the largest aberration that can be reconstructed from Hartmann sensor measurements,” Appl. Opt. 37(20), 4321–4329 (1998).
    [Crossref] [PubMed]
  8. S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindlein, and J. Schwider, “Wave-front reconstruction with a shack-hartmann sensor with an iterative spline fitting method,” Appl. Opt. 39(4), 561–567 (2000).
    [Crossref] [PubMed]
  9. N. Lindlein and J. Pfund, “Experimental results for expanding the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 41(2), 529–533 (2002).
    [Crossref]
  10. N. Lindlein, J. Pfund, and J. Schwider, “Algorithm for expanding the dynamic range of a Shack-Hartmann sensor by using a spatial light modulator,” Opt. Eng. 40(5), 837–840 (2001).
    [Crossref]
  11. H. Choo and R. S. Muller, “Addressable Microlens Array to Improve Dynamic Range of Shack–Hartmann Sensors,” J. Microelectromech. Syst. 15(6), 1555–1567 (2006).
    [Crossref]
  12. Y. Saita, H. Shinto, and T. Nomura, “Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range,” Optica 2(5), 411–415 (2015).
    [Crossref]
  13. J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43(1), 251–256 (2004).
    [Crossref]
  14. L. Zhao, N. Bai, X. Li, L. S. Ong, Z. P. Fang, and A. K. Asundi, “Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor,” Appl. Opt. 45(1), 90–94 (2006).
    [Crossref] [PubMed]
  15. G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 30502 (2006).
    [Crossref] [PubMed]
  16. MathWorks, “findpeaks (R2018b),” https://www.mathworks.com/help/signal/ref/findpeaks.html .
  17. M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).
  18. M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).
  19. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
    [Crossref]

2018 (1)

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

2015 (1)

2007 (1)

J. Novak, P. Novak, and A. Miks, “Application of Shack-Hartmann wavefront sensor for testing optical systems,” Proc. SPIE 6609, 660915 (2007).
[Crossref]

2006 (4)

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

H. Choo and R. S. Muller, “Addressable Microlens Array to Improve Dynamic Range of Shack–Hartmann Sensors,” J. Microelectromech. Syst. 15(6), 1555–1567 (2006).
[Crossref]

L. Zhao, N. Bai, X. Li, L. S. Ong, Z. P. Fang, and A. K. Asundi, “Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor,” Appl. Opt. 45(1), 90–94 (2006).
[Crossref] [PubMed]

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 30502 (2006).
[Crossref] [PubMed]

2004 (1)

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43(1), 251–256 (2004).
[Crossref]

2002 (2)

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

N. Lindlein and J. Pfund, “Experimental results for expanding the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 41(2), 529–533 (2002).
[Crossref]

2001 (2)

N. Lindlein, J. Pfund, and J. Schwider, “Algorithm for expanding the dynamic range of a Shack-Hartmann sensor by using a spatial light modulator,” Opt. Eng. 40(5), 837–840 (2001).
[Crossref]

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

2000 (1)

1998 (2)

Aftab, M.

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).

Asundi, A. K.

Bai, N.

Bouchez, A. H.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Brown, C. G.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Burge, J. H.

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).

Campbell, R. D.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Chin, J. C. Y.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Choo, H.

H. Choo and R. S. Muller, “Addressable Microlens Array to Improve Dynamic Range of Shack–Hartmann Sensors,” J. Microelectromech. Syst. 15(6), 1555–1567 (2006).
[Crossref]

Contos, A. R.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Copland, J.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Danforth, P. M.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Donner, K.

Fang, Z. P.

Giles, M. K.

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43(1), 251–256 (2004).
[Crossref]

Graves, L.

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).

Groening, S.

Hartman, S. K.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Johansson, E. M.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Kim, D. W.

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).

Lafon, R. E.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Le Mignant, D.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Lewis, H.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Li, X.

Lindlein, N.

N. Lindlein and J. Pfund, “Experimental results for expanding the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 41(2), 529–533 (2002).
[Crossref]

N. Lindlein, J. Pfund, and J. Schwider, “Algorithm for expanding the dynamic range of a Shack-Hartmann sensor by using a spatial light modulator,” Opt. Eng. 40(5), 837–840 (2001).
[Crossref]

S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindlein, and J. Schwider, “Wave-front reconstruction with a shack-hartmann sensor with an iterative spline fitting method,” Appl. Opt. 39(4), 561–567 (2000).
[Crossref] [PubMed]

J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23(13), 995–997 (1998).
[Crossref] [PubMed]

Max, C. E.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Miks, A.

J. Novak, P. Novak, and A. Miks, “Application of Shack-Hartmann wavefront sensor for testing optical systems,” Proc. SPIE 6609, 660915 (2007).
[Crossref]

Muller, R. S.

H. Choo and R. S. Muller, “Addressable Microlens Array to Improve Dynamic Range of Shack–Hartmann Sensors,” J. Microelectromech. Syst. 15(6), 1555–1567 (2006).
[Crossref]

Nagy, L. J.

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 30502 (2006).
[Crossref] [PubMed]

Neal, D. A.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Neal, D. R.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Nomura, T.

Novak, J.

J. Novak, P. Novak, and A. Miks, “Application of Shack-Hartmann wavefront sensor for testing optical systems,” Proc. SPIE 6609, 660915 (2007).
[Crossref]

Novak, P.

J. Novak, P. Novak, and A. Miks, “Application of Shack-Hartmann wavefront sensor for testing optical systems,” Proc. SPIE 6609, 660915 (2007).
[Crossref]

Oh, C. J.

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).

Ong, L. S.

Pantanelli, S.

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 30502 (2006).
[Crossref] [PubMed]

Pennington, D. M.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Pfund, J.

N. Lindlein and J. Pfund, “Experimental results for expanding the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 41(2), 529–533 (2002).
[Crossref]

N. Lindlein, J. Pfund, and J. Schwider, “Algorithm for expanding the dynamic range of a Shack-Hartmann sensor by using a spatial light modulator,” Opt. Eng. 40(5), 837–840 (2001).
[Crossref]

S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindlein, and J. Schwider, “Wave-front reconstruction with a shack-hartmann sensor with an iterative spline fitting method,” Appl. Opt. 39(4), 561–567 (2000).
[Crossref] [PubMed]

J. Pfund, N. Lindlein, and J. Schwider, “Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm,” Opt. Lett. 23(13), 995–997 (1998).
[Crossref] [PubMed]

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Rha, J.

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43(1), 251–256 (2004).
[Crossref]

Roggemann, M. C.

Saita, Y.

Schulz, T. J.

Schwider, J.

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Shinto, H.

Sick, B.

Smith, G. A.

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).

Stomski, P. J.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Summers, D. M.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

van Dam, M. A.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Voelz, D. G.

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43(1), 251–256 (2004).
[Crossref]

Wizinowich, P. L.

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Yoon, G.

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 30502 (2006).
[Crossref] [PubMed]

Zhao, L.

Appl. Opt. (3)

J. Biomed. Opt. (1)

G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11(3), 30502 (2006).
[Crossref] [PubMed]

J. Microelectromech. Syst. (1)

H. Choo and R. S. Muller, “Addressable Microlens Array to Improve Dynamic Range of Shack–Hartmann Sensors,” J. Microelectromech. Syst. 15(6), 1555–1567 (2006).
[Crossref]

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[PubMed]

Opt. Eng. (3)

N. Lindlein and J. Pfund, “Experimental results for expanding the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses,” Opt. Eng. 41(2), 529–533 (2002).
[Crossref]

N. Lindlein, J. Pfund, and J. Schwider, “Algorithm for expanding the dynamic range of a Shack-Hartmann sensor by using a spatial light modulator,” Opt. Eng. 40(5), 837–840 (2001).
[Crossref]

J. Rha, D. G. Voelz, and M. K. Giles, “Reconfigurable Shack-Hartmann wavefront sensor,” Opt. Eng. 43(1), 251–256 (2004).
[Crossref]

Opt. Lett. (1)

Optica (1)

Proc. SPIE (2)

J. Novak, P. Novak, and A. Miks, “Application of Shack-Hartmann wavefront sensor for testing optical systems,” Proc. SPIE 6609, 660915 (2007).
[Crossref]

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002).
[Crossref]

Proc. SPIE 10742. Optical Manufacturing and Testing (1)

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Chebyshev gradient polynomials for high resolution surface and wavefront reconstruction,” Proc. SPIE 10742. Optical Manufacturing and Testing XII, 1074211 (2018).

Publ. Astron. Soc. Pac. (1)

P. L. Wizinowich, D. Le Mignant, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, A. R. Contos, M. A. van Dam, S. K. Hartman, E. M. Johansson, R. E. Lafon, H. Lewis, P. J. Stomski, D. M. Summers, C. G. Brown, P. M. Danforth, C. E. Max, and D. M. Pennington, “The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview,” Publ. Astron. Soc. Pac. 118(840), 297–309 (2006).
[Crossref]

Other (4)

L. N. Thibos, “Principles of Hartmann-Shack Aberrometry,” in Vision Science and its Applications, Vol. 35 of 2000 OSA Technical Digest Series (Optical Society of America, 2000), paper NW6.

T. L. Bruno, A. Wirth, and A. J. Jankevics, “Applying Hartmann wavefront-sensing technology to precision optical testing of the Hubble Space Telescope correctors,” Proc. SPIE 1920, Active and Adaptive Optical Components and Systems II (25 August 1993).

MathWorks, “findpeaks (R2018b),” https://www.mathworks.com/help/signal/ref/findpeaks.html .

M. Aftab, J. H. Burge, G. A. Smith, L. Graves, C. J. Oh, and D. W. Kim, “Modal Data Processing for High Resolution Deflectometry”, Int. J. of Precis. Eng. and Manuf.-.Green Tech. (to be published).

Supplementary Material (1)

NameDescription
» Visualization 1       A-SHWFS data

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Basic operating principle of a conventional Shack-Hartmann Wavefront Sensor: (a) Collimated reference wavefront case and (b) Aberrated wavefront case.
Fig. 2
Fig. 2 (a) Schematic layout of the A-SHWFS using actively modulated LCD lenslet array mask. (b) Depiction of how the LCD lenslet array mask (left) and the corresponding detector subapertures (right) are changed dynamically, from a fully unblocked (top) to partially blocked (bottom) situation. The squares on the left represent the pattern sent from the computer to the LCD screen.
Fig. 3
Fig. 3 Quiver plots for three low-order G polynomials in a normalized rectangular domain.
Fig. 4
Fig. 4 A-SHWFS prototype configuration for proof-of-concept experiment. The green arrows represent the direction of laser wavefront propagation through the setup.
Fig. 5
Fig. 5 The custom designed and diamond turned lenslet array of dimensions 40 × 40 mm and containing 35 × 35 lenslets (with missing corner regions) using PMMA, used for the A-SHWFS prototype system.
Fig. 6
Fig. 6 (a) Picture of the three adjacent hexagonal mirror segments set-up. The green circle represents where the test beam hits the mirror set-up and the dotted orange circle shows the approximate location of the small mirror behind the active segment used for the reference autocollimator measurements. (b) Schematic of autocollimator set-up providing the golden standard for the A-SHWFS accuracy test. Red dotted arrows represent the autocollimator beam going to / from the small mirror.
Fig. 7
Fig. 7 (a) Small, and (b) Large magnitude of tilt measurements comparing the autocollimator and A-SHWFS values (blue circles). The error (red crosses), which is the difference between the autocollimator and A-SHWFS values, is shown with its own axis on the right side in both figures. A linear fit to the data is shown as the black line.
Fig. 8
Fig. 8 Spots from the lenslets, on the CMOS detector. Red arrows show the spot motion relative to reference spots, on the active mirror portion of the image. (a) For small tilt, all three mirrors display the maximum number of spots (i.e., higher spatial sampling of the wavefront). The red arrows are shorter. (b) When the amount of tilt increases, the stationary mirror zones maintain the same number of spots while spots from the actively moving mirror have been selectively blocked by the LCD panel to increase the slope measurement dynamic range only in the optimal zone. Hence, the red arrows are longer.
Fig. 9
Fig. 9 Quiver plot arrows for centroids taken (a) before and (b) after the LCD adaptive gating starts. The actively tilted segment part on the left side shows longer arrows while the other two stationary segments on the right side shows very short or no arrows.The area enclosed by the red dotted line corresponds to the zoomed-in regions shown in Fig. 10.
Fig. 10
Fig. 10 Enhanced dynamic range demonstration of the adaptive wavefront sensing approach. The reconstructed wavefront time-lapse (zoomed-in portion of data corresponding to red dotted areas in Fig. 9) shows continuously increasing wavefront tilt as the active mirror was being tilted up-to and beyond the nominal 28.5 mrad dynamic range. The average slope magnitude for each map is shown as well. The dotted red line represents the start of adaptive gating i.e., when the blocking mask was applied to the LCD.
Fig. 11
Fig. 11 Quiver plots of simulated data, representing measurements (Visualization 1) from different wavefronts. The blue arrows are measurements from native detection subapertures while the red arrows are measurements from optimized, larger detection subapertures, where regional A-SHWFS blocking was applied. (Note: a magnification factor of 4 is applied to the length of all arrows, to make them easier to see.)

Tables (1)

Tables Icon

Table 1 Key components of the A-SHWFS prototype system

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x c = y x x I(x,y) y x I(x,y) , y c = y x y I(x,y) y x I(x,y)
G n m ( x,y )= F n m ( x,y )= x F n m ( x,y ) i ^ + y F n m ( x,y ) j ^
F n m (x,y)= T m (x) T n (y) , T m+1 ( x )=2x T m ( x )- T m-1 ( x ) where T 0 ( x )=1,   T 1 ( x )=x, for 1x1, T n+1 ( y )=2y T n ( y )- T n-1 ( y ) where T 0 (y)=1,   T 1 ( y )=y, for 1y1
± tan 1 (3 [ pixels ]×0.19[ mm/pixel ]/20[ mm ] )=± 28.5 mrad
% Error = Autocollimator value A-SHWFS value Autocollimator value  × 100 %

Metrics