Abstract

An all-optical switchable twisted nematic liquid crystal system has been designed for use as a laser protection filter, which takes advantage of light-induced modification of liquid crystal order. The filter employs photochromic azo-doped liquid crystal mixtures that have been optically characterized and incorporated into a laser filter device. The ability to switch between transmission and blocking modes is shown to occur, even for incredibly low intensity (0.5 mW) irradiation with a continuous 405 nm laser. The blocking-state extinction is defined only by the polarizer extinction ratio, and sub-second switching is demonstrated for these low laser intensities. The response is sufficiently fast to provide protection for CCD cameras against laser damage. The optical switching time is shown to depend on both temperature and laser power. This automatic photo-switchable device offers an exciting approach for passive laser protection.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Photo-stimulated phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals

Sudarshan Kundu and Shin-Woong Kang
Opt. Express 21(25) 31324-31329 (2013)

Optical manipulation of nematic colloids at the interfaces in azo-dye-doped liquid crystals

Andy Ying Guey Fuh, Ming-Hsien Li, Te-Wei Chang, Yu-I Lee, and Shing Trong Wu
Appl. Opt. 57(12) 3180-3185 (2018)

All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals

Hossein Jashnsaz, Nahid Hosain Nataj, Ezeddin Mohajerani, and Amir Khabbazi
Appl. Opt. 50(22) 4295-4301 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
    [PubMed]
  2. American National Standard (2014). American National Standard for Safe Use of Lasers. [Online]. Florida: Laser Institute of America. [29th June 18.] Available from: www.lia.org
  3. E. I. L. Jull and H. F. Gleeson, “Tuneable and switchable liquid crystal laser protection system,” Appl. Opt. 56(29), 8061–8066 (2017).
    [Crossref] [PubMed]
  4. A. Rees and J. Staromlynska, “Automatic laser light detection and filtering using a liquid crystal Lyot filter,” J. Nonlinear Opt. Phys. 2(04), 661–676 (1993).
    [Crossref]
  5. C. S. Wu and S. T. Wu, “Liquid-crystal-based switchable polarizers for sensor protection,” Appl. Opt. 34(31), 7221–7227 (1995).
    [Crossref] [PubMed]
  6. U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. 454, 235–245 (2006).
  7. C. Selvarasu and P. Kannan, “Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations,” J. Mol. Struct. 1125, 234–240 (2016).
    [Crossref]
  8. H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
    [Crossref]
  9. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
    [Crossref] [PubMed]
  10. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
    [Crossref]
  11. J. D. Lin, Y. M. Lin, T. S. Mo, and C. R. Lee, “Photosensitive and all-optically fast-controllable photonic bandgap device and laser in a dye-doped blue phase with a low-concentration azobenzene liquid crystal,” Opt. Express 22(8), 9171–9181 (2014).
    [Crossref] [PubMed]
  12. N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).
  13. T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
    [Crossref] [PubMed]
  14. S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
    [Crossref]
  15. P. V. Dolganov, S. O. Gordeev, V. K. Dolganov, and A. Yu. Bobrovsky, “Photo- and thermo-induced variation of photonic properties of cholesteric liquid crystal containing azobenzene-based chiral dopant,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 633(1), 14–22 (2016).
    [Crossref]
  16. Y. C. Hsiao, K. C. Huang, and W. Lee, “Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant,” Opt. Express 25(3), 2687–2693 (2017).
    [Crossref] [PubMed]
  17. L. DeSio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
    [Crossref]
  18. L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
    [Crossref]
  19. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
    [Crossref] [PubMed]
  20. Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, and J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
    [Crossref] [PubMed]
  21. G. Gilardi, S. Xiao, N. Asger Mortensen, A. d’Alessandro, and R. Beccherelli, “Plasmon resonance optical tuning based on photosensitive composite structures,” J. Opt. Soc. Am. B 31(2), 360–365 (2014).
    [Crossref]
  22. J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 8: Applications of Liquid Crystals (Wiley, 2014) 2nd Edition.
  23. S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
    [Crossref]
  24. J. Li and S. Wu, “Extended Cauchy equations for the refractive indicies of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
    [Crossref]
  25. J. Li, Refractive indices of liquid crystals and their applications in display and photonic devices, doctoral dissertation, university of central Florida. (2005).
  26. I. C. Khoo, M. Wood, M. Y. Shih, and P. Chen, “Extremely nonlinear photosensitive liquid crystals for image sensing and sensor protection,” Opt. Express 4(11), 432–442 (1999).
    [Crossref] [PubMed]
  27. B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
    [Crossref]

2017 (3)

2016 (3)

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

P. V. Dolganov, S. O. Gordeev, V. K. Dolganov, and A. Yu. Bobrovsky, “Photo- and thermo-induced variation of photonic properties of cholesteric liquid crystal containing azobenzene-based chiral dopant,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 633(1), 14–22 (2016).
[Crossref]

C. Selvarasu and P. Kannan, “Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations,” J. Mol. Struct. 1125, 234–240 (2016).
[Crossref]

2014 (3)

2012 (1)

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

2011 (2)

Z. Chen, V. K. S. Hsiao, X. Li, Z. Li, J. Yu, and J. Zhang, “Optically tunable microfiber-knot resonator,” Opt. Express 19(15), 14217–14222 (2011).
[Crossref] [PubMed]

L. DeSio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

2010 (1)

2009 (1)

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

2007 (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

2006 (1)

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. 454, 235–245 (2006).

2004 (1)

J. Li and S. Wu, “Extended Cauchy equations for the refractive indicies of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

2003 (1)

M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
[PubMed]

2002 (1)

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

2000 (1)

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

1999 (1)

1995 (2)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

C. S. Wu and S. T. Wu, “Liquid-crystal-based switchable polarizers for sensor protection,” Appl. Opt. 34(31), 7221–7227 (1995).
[Crossref] [PubMed]

1993 (1)

A. Rees and J. Staromlynska, “Automatic laser light detection and filtering using a liquid crystal Lyot filter,” J. Nonlinear Opt. Phys. 2(04), 661–676 (1993).
[Crossref]

Amoroso, P. J.

M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
[PubMed]

Arikainen, E. O.

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

Asger Mortensen, N.

Beccherelli, R.

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. 454, 235–245 (2006).

Chen, P.

Chen, S.

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

Chen, Y.

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

Chen, Z.

d’Alessandro, A.

de Sio, L.

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

DeSio, L.

L. DeSio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

Doane, J. W.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Doi, K.

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

Dolganov, P. V.

P. V. Dolganov, S. O. Gordeev, V. K. Dolganov, and A. Yu. Bobrovsky, “Photo- and thermo-induced variation of photonic properties of cholesteric liquid crystal containing azobenzene-based chiral dopant,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 633(1), 14–22 (2016).
[Crossref]

Dolganov, V. K.

P. V. Dolganov, S. O. Gordeev, V. K. Dolganov, and A. Yu. Bobrovsky, “Photo- and thermo-induced variation of photonic properties of cholesteric liquid crystal containing azobenzene-based chiral dopant,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 633(1), 14–22 (2016).
[Crossref]

Eberle, B.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Gilardi, G.

Gleeson, H. F.

E. I. L. Jull and H. F. Gleeson, “Tuneable and switchable liquid crystal laser protection system,” Appl. Opt. 56(29), 8061–8066 (2017).
[Crossref] [PubMed]

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

Gordeev, S. O.

P. V. Dolganov, S. O. Gordeev, V. K. Dolganov, and A. Yu. Bobrovsky, “Photo- and thermo-induced variation of photonic properties of cholesteric liquid crystal containing azobenzene-based chiral dopant,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 633(1), 14–22 (2016).
[Crossref]

Green, L.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Grozhik, V. A.

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

Guillou, J. P.

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

Harada, H.

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

Harris, M. D.

M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
[PubMed]

Hrozhyk, U.

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. 454, 235–245 (2006).

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Hsiao, V. K. S.

Hsiao, Y. C.

Huang, K. C.

Ikeda, T.

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Ilchishin, I. P.

Jull, E. I. L.

Kanazawa, A.

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

Kannan, P.

C. Selvarasu and P. Kannan, “Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations,” J. Mol. Struct. 1125, 234–240 (2016).
[Crossref]

Khan, A.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Khoo, I. C.

Koerber, M.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Kravchuk, R. M.

La Deda, M.

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

Lee, C. R.

Lee, H.

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

Lee, W.

Li, J.

J. Li and S. Wu, “Extended Cauchy equations for the refractive indicies of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Li, Refractive indices of liquid crystals and their applications in display and photonic devices, doctoral dissertation, university of central Florida. (2005).

Li, Q.

T. V. Mykytiuk, I. P. Ilchishin, O. V. Yaroshchuk, R. M. Kravchuk, Y. Li, and Q. Li, “Rapid reversible phototuning of lasing frequency in dye-doped cholesteric liquid crystal,” Opt. Lett. 39(22), 6490–6493 (2014).
[Crossref] [PubMed]

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Li, X.

Li, Y.

Li, Z.

Lightfoot, M.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Lin, J. D.

Lin, Y. M.

Lincoln, A. E.

M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
[PubMed]

Ma, M.

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

Magyar, G.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Mo, T. S.

Montbach, E.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Mykytiuk, T. V.

Rees, A.

A. Rees and J. Staromlynska, “Automatic laser light detection and filtering using a liquid crystal Lyot filter,” J. Nonlinear Opt. Phys. 2(04), 661–676 (1993).
[Crossref]

Ricciardi, L.

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

Ritt, G.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Schneider, T.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Schwarz, B.

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Selvarasu, C.

C. Selvarasu and P. Kannan, “Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations,” J. Mol. Struct. 1125, 234–240 (2016).
[Crossref]

Serak, S.

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

L. DeSio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. 454, 235–245 (2006).

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

Shi, Y.

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

Shih, M. Y.

Shiono, T.

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

Sliney, D.

M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
[PubMed]

Staromlynska, J.

A. Rees and J. Staromlynska, “Automatic laser light detection and filtering using a liquid crystal Lyot filter,” J. Nonlinear Opt. Phys. 2(04), 661–676 (1993).
[Crossref]

Stuck, B.

M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
[PubMed]

Tabiryan, N.

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

L. DeSio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. 454, 235–245 (2006).

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express 18(9), 9651–9657 (2010).
[Crossref] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Tong, X.

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

Tsutsumi, O.

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Umeton, C.

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

L. DeSio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

Usova, N. A.

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

Venkataraman, N.

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Wang, X.

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

White, T. J.

Wood, M.

Wu, B.

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

Wu, C. S.

Wu, S.

J. Li and S. Wu, “Extended Cauchy equations for the refractive indicies of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

Wu, S. T.

Xiao, S.

Yaroshchuk, O. V.

Yu, J.

Yu. Bobrovsky, A.

P. V. Dolganov, S. O. Gordeev, V. K. Dolganov, and A. Yu. Bobrovsky, “Photo- and thermo-induced variation of photonic properties of cholesteric liquid crystal containing azobenzene-based chiral dopant,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 633(1), 14–22 (2016).
[Crossref]

Zhang, J.

Adv. Funct. Mater. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Optical tuning of the reflection of cholesterics doped with azobenzene liquid crystals,” Adv. Funct. Mater. 17(11), 1735–1742 (2007).
[Crossref]

Appl. Opt. (2)

Aviat. Space Environ. Med. (1)

M. D. Harris, A. E. Lincoln, P. J. Amoroso, B. Stuck, and D. Sliney, “Laser eye injuries in military occupations,” Aviat. Space Environ. Med. 74(9), 947–952 (2003).
[PubMed]

J. Appl. Phys. (1)

J. Li and S. Wu, “Extended Cauchy equations for the refractive indicies of liquid crystals,” J. Appl. Phys. 95(3), 896–901 (2004).
[Crossref]

J. Mater. Chem. (2)

L. DeSio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

L. de Sio, L. Ricciardi, S. Serak, M. La Deda, N. Tabiryan, and C. Umeton, “Photo-sensitive liquid crystals for optically controlled diffraction gratings,” J. Mater. Chem. 22(14), 6669–6673 (2012).
[Crossref]

J. Mol. Struct. (1)

C. Selvarasu and P. Kannan, “Effect of azo and ester linkages on rod shaped Schiff base liquid crystals and their photophysical investigations,” J. Mol. Struct. 1125, 234–240 (2016).
[Crossref]

J. Nonlinear Opt. Phys. (1)

A. Rees and J. Staromlynska, “Automatic laser light detection and filtering using a liquid crystal Lyot filter,” J. Nonlinear Opt. Phys. 2(04), 661–676 (1993).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

H. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B 104(30), 7023–7028 (2000).
[Crossref]

J. SID. (1)

N. Venkataraman, G. Magyar, M. Lightfoot, E. Montbach, A. Khan, T. Schneider, J. W. Doane, L. Green, and Q. Li, “Thin flexible photosensitive cholesteric displays,” J. SID. 17(10), 869–873 (2009).

Liq. Cryst. (1)

S. V. Serak, E. O. Arikainen, H. F. Gleeson, V. A. Grozhik, J. P. Guillou, and N. A. Usova, “Laser-induced concentric olour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant,” Liq. Cryst. 29(1), 19–26 (2002).
[Crossref]

Mater. Res. Express (1)

S. Chen, Y. Chen, X. Tong, B. Wu, M. Ma, Y. Shi, and X. Wang, “Room temperature optical image storage devices based on novel photo-responsive chiral azobenzene liquid crystal dopants,” Mater. Res. Express 3(11), 115701 (2016).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

U. Hrozhyk, S. Serak, N. Tabiryan, and T. J. Bunning, “Wide temperature range azobenzene nematic and smectic LC materials,” Mol. Cryst. Liq. Cryst. 454, 235–245 (2006).

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. V. Dolganov, S. O. Gordeev, V. K. Dolganov, and A. Yu. Bobrovsky, “Photo- and thermo-induced variation of photonic properties of cholesteric liquid crystal containing azobenzene-based chiral dopant,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 633(1), 14–22 (2016).
[Crossref]

Opt. Eng. (1)

B. Schwarz, G. Ritt, M. Koerber, and B. Eberle, “Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems,” Opt. Eng. 56(3), 034108 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[Crossref] [PubMed]

Other (3)

J. W. Goodby, P. J. Collings, K. Takashi, C. Tschierske, H. F. Gleeson, and P. Raynes, Handbook of Liquid Crystals Volume 8: Applications of Liquid Crystals (Wiley, 2014) 2nd Edition.

J. Li, Refractive indices of liquid crystals and their applications in display and photonic devices, doctoral dissertation, university of central Florida. (2005).

American National Standard (2014). American National Standard for Safe Use of Lasers. [Online]. Florida: Laser Institute of America. [29th June 18.] Available from: www.lia.org

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The structure and conformal shapes of BAAB2. (b) BAAB2 in acetone absorption spectrum, obtained using an Agilent UV/Vis 6000 spectrometer. All data can be found at https://doi.org/10.5518/364.
Fig. 2
Fig. 2 (a) TNI for dark and irradiated conditions using DSC and POM. (b) The variation in transition temperature under varying broadband intensity, compared with ambient intensity.
Fig. 3
Fig. 3 (a) The experimental wavelength dispersion measurements of 5CB and mix-10. Solid lines show the extended Cauchy model fit (parameters: S5CB-0.67, λ*5CB = 223 nm, G5CB = 3.4, Smix-10 = 0.60, λ*mix-10 = 243 nm, and Gmix-10 = 3.1). (b) Transmission and blocking spectra for mix-10. Inserts show imaging through the device, captured using a Nikon D7100 camera.
Fig. 4
Fig. 4 Response time dependence on (a) temperature, (b) reduced temperature (for mix-5 and mix-10), and (c) laser intensity (for mix-10, at T = 38 °C). Insert demonstrates typical transmission response.

Metrics