Abstract

Marine oil slicks show brighter or darker than surrounding oil-free seawater under different sunglint, which can be observed by satellite optical sensors. Although this has been interpreted using a critical angle concept and simulated using the Cox-Munk model, it has not been demonstrated in high spatial resolution images from airborne sensors. In this study, an AISA (airborne imaging spectrometer for applications) image was used to determine the characteristics of non-emulsion oil slicks under sunglint in high spatial resolution images. Although a similar positive or negative contrast between non-emulsion oil slicks and oil-free seawater can be observed, it is difficult to directly model sunglint reflectance due to the different remote sensing scale effect. There are many sun glitter pepper noise produced by various micro-mirror facets of ocean surface in high spatial resolution images. Based on the optical image characteristics, a normalized noise index (ξ) was designed to evaluate the pepper noise in 1830 band-difference results. Then a level segmentation method was used to delineate the oil slicks under various sunglint from a minimum pepper noise image. Our study provides a preliminary reference for airborne optical remote sensing of oil slicks under various levels of sunglint.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Airborne ultraviolet imaging system for oil slick surveillance: oil–seawater contrast, imaging concept, signal-to-noise ratio, optical design, and optomechanical model

Zhenhua Shi, Lei Yu, Diansheng Cao, Qingwen Wu, Xiangyang Yu, and Guanyu Lin
Appl. Opt. 54(25) 7648-7655 (2015)

Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf

Jun Zhao, Marouane Temimi, Hosni Ghedira, and Chuanmin Hu
Opt. Express 22(11) 13755-13772 (2014)

Oil film thickness measurement using airborne laser-induced water Raman backscatter

F. E. Hoge and R. N. Swift
Appl. Opt. 19(19) 3269-3281 (1980)

References

  • View by:
  • |
  • |
  • |

  1. K. Kvenvolden and C. Cooper, “Natural seepage of crude oil into the marine environment,” Geo-Mar. Lett. 23(3), 140–146 (2003).
    [Crossref]
  2. I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
    [Crossref]
  3. Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
    [Crossref]
  4. B. Zhang, W. Perrie, X. Li, and W. G. Pichel, “Mapping sea surface oil slicks using radarsat-2 quad-polarization sar image,” Geophys. Res. Lett. 38(10), 415–421 (2011).
    [Crossref]
  5. J. Zhao, M. Temimi, H. Ghedira, and C. Hu, “Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf,” Opt. Express 22(11), 13755–13772 (2014).
    [Crossref] [PubMed]
  6. I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
    [Crossref]
  7. A. Pisano, F. Bignami, and R. Santoleri, “Oil spill detection in glint-contaminated near-infrared MODIS imagery,” Remote Sens. 7(1), 1112–1134 (2015).
    [Crossref]
  8. Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
    [Crossref]
  9. C. Hu, X. Li, W. G. Pichel, and F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), 58–69 (2009).
    [Crossref]
  10. C. Jackson and W. Alpers, “The role of the critical angle in brightness reversals on sunglint images of the sea surface,” J. Geophys. Res. 115(C9), C09019 (2010).
    [Crossref]
  11. T. Kuser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR singal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
    [Crossref]
  12. Z. Otremba and J. Piskozub, “Modeling the remotely sensed optical contrast caused by oil suspended in the sea water column,” Opt. Express 11(1), 2–6 (2003).
    [Crossref] [PubMed]
  13. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the Sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [Crossref]
  14. Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
    [Crossref]
  15. H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Ra. 111(3), 492–506 (2010).
    [Crossref]
  16. S. Sun and C. Hu, “Sun glint requirement for the remote detection of surface oil film,” Geophys. Res. Lett. 43(1), 309–316 (2016).
    [Crossref]
  17. H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
    [Crossref]
  18. C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), 7395 (2012).
    [Crossref]
  19. C. Li, C. Xu, C. Gui, and M. Fox, “Level set evolution without re-initialization: a new variational formulation,” In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 430–436).

2018 (2)

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

2016 (2)

S. Sun and C. Hu, “Sun glint requirement for the remote detection of surface oil film,” Geophys. Res. Lett. 43(1), 309–316 (2016).
[Crossref]

Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
[Crossref]

2015 (1)

A. Pisano, F. Bignami, and R. Santoleri, “Oil spill detection in glint-contaminated near-infrared MODIS imagery,” Remote Sens. 7(1), 1112–1134 (2015).
[Crossref]

2014 (1)

2013 (1)

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

2012 (2)

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), 7395 (2012).
[Crossref]

2011 (1)

B. Zhang, W. Perrie, X. Li, and W. G. Pichel, “Mapping sea surface oil slicks using radarsat-2 quad-polarization sar image,” Geophys. Res. Lett. 38(10), 415–421 (2011).
[Crossref]

2010 (2)

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Ra. 111(3), 492–506 (2010).
[Crossref]

C. Jackson and W. Alpers, “The role of the critical angle in brightness reversals on sunglint images of the sea surface,” J. Geophys. Res. 115(C9), C09019 (2010).
[Crossref]

2009 (2)

T. Kuser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR singal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

C. Hu, X. Li, W. G. Pichel, and F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), 58–69 (2009).
[Crossref]

2003 (2)

K. Kvenvolden and C. Cooper, “Natural seepage of crude oil into the marine environment,” Geo-Mar. Lett. 23(3), 140–146 (2003).
[Crossref]

Z. Otremba and J. Piskozub, “Modeling the remotely sensed optical contrast caused by oil suspended in the sea water column,” Opt. Express 11(1), 2–6 (2003).
[Crossref] [PubMed]

1993 (1)

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

1954 (1)

Ackleson, S. G.

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

Alpers, W.

C. Jackson and W. Alpers, “The role of the critical angle in brightness reversals on sunglint images of the sea surface,” J. Geophys. Res. 115(C9), C09019 (2010).
[Crossref]

Amos, J. F.

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

Beatty, D. S.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Bignami, F.

A. Pisano, F. Bignami, and R. Santoleri, “Oil spill detection in glint-contaminated near-infrared MODIS imagery,” Remote Sens. 7(1), 1112–1134 (2015).
[Crossref]

Bradley, E.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Brooks, J. M.

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

Clark, R.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Cooper, C.

K. Kvenvolden and C. Cooper, “Natural seepage of crude oil into the marine environment,” Geo-Mar. Lett. 23(3), 140–146 (2003).
[Crossref]

Cox, C.

Dennison, P.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Duckworth, R.

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

Franz, B.

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), 7395 (2012).
[Crossref]

Ghedira, H.

Guinasso, N. L.

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

Holt, B.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Hu, C.

Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
[Crossref]

S. Sun and C. Hu, “Sun glint requirement for the remote detection of surface oil film,” Geophys. Res. Lett. 43(1), 309–316 (2016).
[Crossref]

J. Zhao, M. Temimi, H. Ghedira, and C. Hu, “Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters--a case study in the Arabian Gulf,” Opt. Express 22(11), 13755–13772 (2014).
[Crossref] [PubMed]

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), 7395 (2012).
[Crossref]

C. Hu, X. Li, W. G. Pichel, and F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), 58–69 (2009).
[Crossref]

Hu, Y.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Jackson, C.

C. Jackson and W. Alpers, “The role of the critical angle in brightness reversals on sunglint images of the sea surface,” J. Geophys. Res. 115(C9), C09019 (2010).
[Crossref]

Jones, C. E.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Kuser, T.

T. Kuser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR singal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

Kvenvolden, K.

K. Kvenvolden and C. Cooper, “Natural seepage of crude oil into the marine environment,” Geo-Mar. Lett. 23(3), 140–146 (2003).
[Crossref]

Lee, Z.

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), 7395 (2012).
[Crossref]

Lehr, W. J.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Leifer, I.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Li, D.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Li, X.

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

B. Zhang, W. Perrie, X. Li, and W. G. Pichel, “Mapping sea surface oil slicks using radarsat-2 quad-polarization sar image,” Geophys. Res. Lett. 38(10), 415–421 (2011).
[Crossref]

C. Hu, X. Li, W. G. Pichel, and F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), 58–69 (2009).
[Crossref]

Li, Y.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Liu, Y.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

Lou, X.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Lu, Y.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
[Crossref]

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

Macdonald, I. R.

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

Mao, Z.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

Matheson, S.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Muller-Karger, F. E.

C. Hu, X. Li, W. G. Pichel, and F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), 58–69 (2009).
[Crossref]

Munk, W.

Murch, B.

Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
[Crossref]

Otremba, Z.

Perrie, W.

B. Zhang, W. Perrie, X. Li, and W. G. Pichel, “Mapping sea surface oil slicks using radarsat-2 quad-polarization sar image,” Geophys. Res. Lett. 38(10), 415–421 (2011).
[Crossref]

Pichel, W. G.

B. Zhang, W. Perrie, X. Li, and W. G. Pichel, “Mapping sea surface oil slicks using radarsat-2 quad-polarization sar image,” Geophys. Res. Lett. 38(10), 415–421 (2011).
[Crossref]

C. Hu, X. Li, W. G. Pichel, and F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), 58–69 (2009).
[Crossref]

Pisano, A.

A. Pisano, F. Bignami, and R. Santoleri, “Oil spill detection in glint-contaminated near-infrared MODIS imagery,” Remote Sens. 7(1), 1112–1134 (2015).
[Crossref]

Piskozub, J.

Praks, J.

T. Kuser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR singal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

Reif, M.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Ren, L.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Roberts, D. A.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Santoleri, R.

A. Pisano, F. Bignami, and R. Santoleri, “Oil spill detection in glint-contaminated near-infrared MODIS imagery,” Remote Sens. 7(1), 1112–1134 (2015).
[Crossref]

Sassen, R.

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

Shi, A.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Shi, J.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

Sun, S.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

S. Sun and C. Hu, “Sun glint requirement for the remote detection of surface oil film,” Geophys. Res. Lett. 43(1), 309–316 (2016).
[Crossref]

Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
[Crossref]

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

Svejkovsky, J.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Swayze, G.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Temimi, M.

Tian, Q.

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

Vahtmäe, E.

T. Kuser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR singal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

Wang, J.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Wang, M.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Ra. 111(3), 492–506 (2010).
[Crossref]

Wang, X.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Wen, Y.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

Wozencraft, J.

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

Yang, K.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Yang, Q.

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

Zhang, B.

B. Zhang, W. Perrie, X. Li, and W. G. Pichel, “Mapping sea surface oil slicks using radarsat-2 quad-polarization sar image,” Geophys. Res. Lett. 38(10), 415–421 (2011).
[Crossref]

Zhang, H.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Ra. 111(3), 492–506 (2010).
[Crossref]

Zhang, M.

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

Zhang, M. W.

Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
[Crossref]

Zhao, J.

Zheng, G.

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

Geo-Mar. Lett. (1)

K. Kvenvolden and C. Cooper, “Natural seepage of crude oil into the marine environment,” Geo-Mar. Lett. 23(3), 140–146 (2003).
[Crossref]

Geophys. Res. Lett. (3)

B. Zhang, W. Perrie, X. Li, and W. G. Pichel, “Mapping sea surface oil slicks using radarsat-2 quad-polarization sar image,” Geophys. Res. Lett. 38(10), 415–421 (2011).
[Crossref]

C. Hu, X. Li, W. G. Pichel, and F. E. Muller-Karger, “Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery,” Geophys. Res. Lett. 36(1), 58–69 (2009).
[Crossref]

S. Sun and C. Hu, “Sun glint requirement for the remote detection of surface oil film,” Geophys. Res. Lett. 43(1), 309–316 (2016).
[Crossref]

Int. J. Digit. Earth (1)

Y. Wen, M. Wang, Y. Lu, S. Sun, M. Zhang, Z. Mao, J. Shi, and Y. Liu, “An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint,” Int. J. Digit. Earth 11(9), 972–979 (2018).
[Crossref]

J. Geophys. Res. (4)

C. Hu, Z. Lee, and B. Franz, “Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference,” J. Geophys. Res. 117(C1), 7395 (2012).
[Crossref]

C. Jackson and W. Alpers, “The role of the critical angle in brightness reversals on sunglint images of the sea surface,” J. Geophys. Res. 115(C9), C09019 (2010).
[Crossref]

Y. Lu, S. Sun, M. W. Zhang, B. Murch, and C. Hu, “Refinement of the critical angle calculation for the contrast of oil slicks under sunglint,” J. Geophys. Res. 121(1), 148–161 (2016).
[Crossref]

I. R. Macdonald, N. L. Guinasso, S. G. Ackleson, J. F. Amos, R. Duckworth, R. Sassen, and J. M. Brooks, “Natural oil slicks in the Gulf of Mexico visible from space,” J. Geophys. Res. 98(C9), 16351–16364 (1993).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Ra. (1)

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Ra. 111(3), 492–506 (2010).
[Crossref]

Mar. Geod. (1)

Y. Lu, X. Li, Q. Tian, G. Zheng, S. Sun, Y. Liu, and Q. Yang, “Progress in Marine Oil Spill Optical Remote Sensing: Detected Targets, Spectral Response Characteristics, and Theories,” Mar. Geod. 36(3), 334–346 (2013).
[Crossref]

Opt. Express (2)

Remote Sens. (1)

A. Pisano, F. Bignami, and R. Santoleri, “Oil spill detection in glint-contaminated near-infrared MODIS imagery,” Remote Sens. 7(1), 1112–1134 (2015).
[Crossref]

Remote Sens. Environ. (3)

T. Kuser, E. Vahtmäe, and J. Praks, “A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR singal,” Remote Sens. Environ. 113(10), 2267–2274 (2009).
[Crossref]

I. Leifer, W. J. Lehr, D. S. Beatty, E. Bradley, R. Clark, P. Dennison, Y. Hu, S. Matheson, C. E. Jones, B. Holt, M. Reif, D. A. Roberts, J. Svejkovsky, G. Swayze, and J. Wozencraft, “State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill,” Remote Sens. Environ. 124, 185–209 (2012).
[Crossref]

H. Zhang, K. Yang, X. Lou, Y. Li, G. Zheng, J. Wang, X. Wang, L. Ren, D. Li, and A. Shi, “Observation of sea surface roughness at a pixel scale using multi-angle sun glitter images acquired by the ASTER sensor,” Remote Sens. Environ. 208, 97–108 (2018).
[Crossref]

Other (1)

C. Li, C. Xu, C. Gui, and M. Fox, “Level set evolution without re-initialization: a new variational formulation,” In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 1, pp. 430–436).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 AISA RGB image (R: 789 nm, G: 675 nm, B: 552 nm) on 14 October 2005 (02:50 UTC time) covering an oil platform in the coastal zone near to the estuary of the Pearl River in China. The white dashed lines indicate the scan line and the aircraft track respectively. The oil slicks spilled from the oil platform can barely be observed in this image.
Fig. 2
Fig. 2 Schematic representation of how the sunglint reflectance of oil slicks and seawater surfaces can be determined from airborne or satellite sensors. (a) Oil slicks would appear darker (negative contrast) or brighter (positive contrast) than the surrounding oil-free seawater under various sunglint in optical imagery collected from a satellite sensor. (b) Statistical sunglint reflectance (LGN) can be estimated using the Cox-Munk model, refractive index (nwater, noil, and nair), viewing angles, and surface roughness (σ2water or σ2oil). (c) Oil slicks or seawater surface showing random sunglint in several airborne sensor images.
Fig. 3
Fig. 3 (a) Schematic graph showing the critical angle in brightness contrast reversal under sunglint. (b) Normalized noise index of band-difference (ξ). Brightness contrast between oil slicks and seawater under various levels of sunglint; the critical angle can be determined during their brightness contrast reversal. α and β indicate the reflectance difference. ξ represents the noise in the band difference results; high/low values indicate more/less pepper noise.
Fig. 4
Fig. 4 AISA image and spectral reflectance of oil slicks and surrounding seawater. (a) and (b) Band 6 (443 nm) and band 53 (885 nm) were stretched to show bright and dark oil slicks (red and blue crosses indicated oil slicks and oil-free seawater, respectively). (c) and (d) Positive or negative contrast of spectral reflectance of oil slicks and seawater corresponding to (a) and (b).
Fig. 5
Fig. 5 Triangular matrix of the normalized noise index (ξ) of 1830 images of band-difference derived from 61 AISA bands; a transect across negative contrast (inset) is used to calculate ξ. ξ = 0.1 (difference between band 12 and band 24), ξ = 0.2 (difference between band 48 and band 27), ξ = 0.3 (difference between band 58 and band 31), and ξ = 0.9 (difference between band 53 and band 50). The values of ξ are indicated by a cross and are numbered I-IV).
Fig. 6
Fig. 6 Oil slicks in various band-difference images with ξ = 0.1, 0.3, 0.5, and 0.7, corresponding to ξ (I-IV) in Fig. 5.
Fig. 7
Fig. 7 Identification of oil slicks from a band-difference image (ξ = 0.1) using the level set segmentation method (oil slick is indicated by a red solid line). Oil spilled from the oil platform and spread over the ocean surface following the wind direction. Statistical histograms of band-difference reflectance of the oil slicks and the surrounding oil-free seawater in negative or positive contrast (on the left or right of the critical angle line) are shown in inset (a) and (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L G N ( θ 0 , θ , ϕ , σ 2 ) = ρ ( ω ) 4 P ( θ 0 , θ , ϕ , σ 2 ) 1 + tan 2 β cos θ
P ( θ 0 , θ , ϕ , σ 2 ) = 1 π σ 2 exp ( tan 2 β σ 2 )
tan 2 β = sin 2 θ 0 + sin 2 θ + 2 sin θ 0 sin θ cos ϕ ( cos θ 0 + cos θ ) 2
ξ = | ( α β ) / ( α + β ) |
g = 1 1 + G σ * I

Metrics