Abstract

Polarization beam splitters (PBSs) are central elements for polarization handling. Here, we present the design of an ultra-broadband, low-loss, and easy-to-fabricate PBS based on a silicon nitride asymmetrical directional coupler for polarization-sensitive optical coherence tomography systems. The phase difference between transverse electric and transverse magnetic modes is introduced by using straight waveguides with different widths and an offset between them. A bent waveguide is placed close to the end of the through port in order to increase the operating bandwidth (i.e., more than 220 nm with greater than 15 dB of extinction). The overall device length is only 400 µm.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband and compact polarization beam splitter based on an asymmetrical directional coupler with extra optimizing designs

Dawei Wang, Yujie Hu, Wencheng Yue, Youhong Zeng, Zhijuan Tu, Yan Cai, Wei Wang, Qing Fang, and Mingbin Yu
Appl. Opt. 58(30) 8221-8226 (2019)

Ultra-broadband high-performance polarizing beam splitter on silicon

Hao Wu, Ying Tan, and Daoxin Dai
Opt. Express 25(6) 6069-6075 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. B. Xavier, G. Vilela de Faria, G. P. Temporão, and J. P. von der Weid, “Full polarization control for fiber optical quantum communication systems using polarization encoding,” Opt. Express 16(3), 1867–1873 (2008).
    [Crossref] [PubMed]
  2. X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
    [Crossref] [PubMed]
  3. B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, “Polarization-based multiple-bit optical data storage,” J. Opt. 16(12), 125402 (2014).
    [Crossref]
  4. K. Kikuchi, “Electronic polarization-division demultiplexing based on digital signal processing in intensity-modulation direct-detection optical communication systems,” Opt. Express 22(2), 1971–1980 (2014).
    [Crossref] [PubMed]
  5. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
    [Crossref] [PubMed]
  6. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref] [PubMed]
  7. Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
    [Crossref]
  8. J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
    [Crossref] [PubMed]
  9. D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673 (2012).
    [Crossref]
  10. X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
    [Crossref]
  11. B. Ni and J. Xiao, “Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler,” IEEE J. Quantum Electron. 53(4), 1–8 (2017).
    [Crossref]
  12. F. Liu, S. Ye, K. Zhang, and G. Ren, “Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna,” IEEE Photonics J. 9(5), 1–10 (2017).
    [Crossref]
  13. D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
    [Crossref] [PubMed]
  14. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express 19(13), 12646–12651 (2011).
    [Crossref] [PubMed]
  15. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
    [Crossref] [PubMed]
  16. H. Wu and D. Dai, “High-performance polarizing beam splitters based on cascaded bent directional couplers,” IEEE Photonics Technol. Lett. 29(5), 474–477 (2017).
    [Crossref]
  17. S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
    [Crossref]
  18. J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
    [Crossref]
  19. B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
    [Crossref] [PubMed]

2018 (2)

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

2017 (4)

H. Wu and D. Dai, “High-performance polarizing beam splitters based on cascaded bent directional couplers,” IEEE Photonics Technol. Lett. 29(5), 474–477 (2017).
[Crossref]

B. Ni and J. Xiao, “Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler,” IEEE J. Quantum Electron. 53(4), 1–8 (2017).
[Crossref]

F. Liu, S. Ye, K. Zhang, and G. Ren, “Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna,” IEEE Photonics J. 9(5), 1–10 (2017).
[Crossref]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

2014 (5)

2013 (2)

B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Opt. Express 21(14), 16648–16656 (2013).
[Crossref] [PubMed]

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

2012 (1)

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673 (2012).
[Crossref]

2011 (3)

2010 (1)

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

2008 (1)

Akca, B. I.

Akimoto, R.

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

Alex, A.

Alonso-Ramos, C.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Ang, S. S. N.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Baudot, C.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Benedikovic, D.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Boeuf, F.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Bowers, J. E.

Braaf, B.

Cassan, E.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Chen, C.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Chen, M.-C.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Chew, A. B.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Dai, D.

H. Wu and D. Dai, “High-performance polarizing beam splitters based on cascaded bent directional couplers,” IEEE Photonics Technol. Lett. 29(5), 474–477 (2017).
[Crossref]

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673 (2012).
[Crossref]

D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19(19), 18614–18620 (2011).
[Crossref] [PubMed]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref] [PubMed]

de Boer, J. F.

de Groot, M.

de Ridder, R. M.

Ding, Y.

Drexler, W.

Duran-Valdeiglesias, E.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Fang, Y.-Q.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Feng, J.

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

Gan, F.

Guerber, S.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Hitzenberger, C. K.

Hu, W.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Huang, H.-L.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Huang, J. Z.

B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, “Polarization-based multiple-bit optical data storage,” J. Opt. 16(12), 125402 (2014).
[Crossref]

Huang, Y.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Hvam, J. M.

Jiang, X.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Kikuchi, K.

Le Roux, X.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Li, L.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Li, W.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

J. Wang, B. Niu, Z. Sheng, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction,” Opt. Express 22(11), 13565–13571 (2014).
[Crossref] [PubMed]

Li, Y.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Li, Z.

B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, “Polarization-based multiple-bit optical data storage,” J. Opt. 16(12), 125402 (2014).
[Crossref]

Liu, C.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Liu, F.

F. Liu, S. Ye, K. Zhang, and G. Ren, “Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna,” IEEE Photonics J. 9(5), 1–10 (2017).
[Crossref]

Liu, L.

Liu, N.-L.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Lu, C.-Y.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Luo, Y.-H.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Marris-Morini, D.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Mei, T.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Miao, X. S.

B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, “Polarization-based multiple-bit optical data storage,” J. Opt. 16(12), 125402 (2014).
[Crossref]

Ni, B.

B. Ni and J. Xiao, “Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler,” IEEE J. Quantum Electron. 53(4), 1–8 (2017).
[Crossref]

Ni, R. W.

B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, “Polarization-based multiple-bit optical data storage,” J. Opt. 16(12), 125402 (2014).
[Crossref]

Niu, B.

Pan, J.-W.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Peters, J.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673 (2012).
[Crossref]

Pollnau, M.

Považay, B.

Qi, M.

Ren, G.

F. Liu, S. Ye, K. Zhang, and G. Ren, “Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna,” IEEE Photonics J. 9(5), 1–10 (2017).
[Crossref]

Sheng, Z.

Su, Z.-E.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Temporão, G. P.

Teng, J.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Tu, X.

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

Tu, Z.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Vermeer, K. A.

Vienola, K. V.

Vilela de Faria, G.

Vivien, L.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

von der Weid, J. P.

Vulliet, N.

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

Wang, J.

Wang, X.

Wang, X.-L.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Wang, Z.

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673 (2012).
[Crossref]

D. Dai, Z. Wang, and J. E. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett. 36(13), 2590–2592 (2011).
[Crossref] [PubMed]

Wörhoff, K.

Wu, A.

Wu, H.

H. Wu and D. Dai, “High-performance polarizing beam splitters based on cascaded bent directional couplers,” IEEE Photonics Technol. Lett. 29(5), 474–477 (2017).
[Crossref]

Xavier, G. B.

Xiao, J.

B. Ni and J. Xiao, “Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler,” IEEE J. Quantum Electron. 53(4), 1–8 (2017).
[Crossref]

Yasuno, Y.

Ye, S.

F. Liu, S. Ye, K. Zhang, and G. Ren, “Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna,” IEEE Photonics J. 9(5), 1–10 (2017).
[Crossref]

Yi, H.

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Yvind, K.

Zeng, B. J.

B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, “Polarization-based multiple-bit optical data storage,” J. Opt. 16(12), 125402 (2014).
[Crossref]

Zhang, J.

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Zhang, K.

F. Liu, S. Ye, K. Zhang, and G. Ren, “Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna,” IEEE Photonics J. 9(5), 1–10 (2017).
[Crossref]

Zou, S.

Biomed. Opt. Express (2)

IEEE J. Quantum Electron. (1)

B. Ni and J. Xiao, “Ultracompact and broadband silicon-based polarization beam splitter using an asymmetrical directional coupler,” IEEE J. Quantum Electron. 53(4), 1–8 (2017).
[Crossref]

IEEE Photonics J. (1)

F. Liu, S. Ye, K. Zhang, and G. Ren, “Controllable Unidirectional Emission With Double-Resonant Plasmonic Antenna,” IEEE Photonics J. 9(5), 1–10 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (5)

D. Dai, Z. Wang, J. Peters, and J. E. Bowers, “Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides,” IEEE Photonics Technol. Lett. 24(8), 673 (2012).
[Crossref]

X. Tu, S. S. N. Ang, A. B. Chew, J. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photonics Technol. Lett. 22(17), 1324–1326 (2010).
[Crossref]

H. Wu and D. Dai, “High-performance polarizing beam splitters based on cascaded bent directional couplers,” IEEE Photonics Technol. Lett. 29(5), 474–477 (2017).
[Crossref]

S. Guerber, C. Alonso-Ramos, D. Benedikovic, E. Duran-Valdeiglesias, X. Le Roux, N. Vulliet, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, and L. Vivien, “Broadband polarization beam splitter on a silicon nitride platform for o-band operation,” IEEE Photonics Technol. Lett. 30(19), 1679–1682 (2018).
[Crossref]

J. Feng and R. Akimoto, “A three-dimensional silicon nitride polarizing beam splitter,” IEEE Photonics Technol. Lett. 26(7), 706–709 (2014).
[Crossref]

J. Opt. (1)

B. J. Zeng, R. W. Ni, J. Z. Huang, Z. Li, and X. S. Miao, “Polarization-based multiple-bit optical data storage,” J. Opt. 16(12), 125402 (2014).
[Crossref]

Opt. Commun. (1)

Y. Huang, Z. Tu, H. Yi, Y. Li, X. Wang, and W. Hu, “High extinction ratio polarization beam splitter with multimode interference coupler on SOI,” Opt. Commun. 307, 46–49 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

X.-L. Wang, Y.-H. Luo, H.-L. Huang, M.-C. Chen, Z.-E. Su, C. Liu, C. Chen, W. Li, Y.-Q. Fang, X. Jiang, J. Zhang, L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, “18-Qubit entanglement with six photons’ three degrees of freedom,” Phys. Rev. Lett. 120(26), 260502 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of a polarization-sensitive OCT system. Blue regions consist of polarization components. The size of the polarization delay unit (PDU) is approximately 20 cm x 20 cm. Modified from Ref [5]. with permission. (b) Schematic of the packaged integrated PBS with fiber connectors.
Fig. 2
Fig. 2 Schematic of the (a) proposed PBS, showing the various design parameters. (Only Si3N4 guiding layer and the SiO2 bottom cladding are shown) and (b) waveguide geometry. (c) Effective refractive indices of the fundamental TE and TM modes for different waveguide widths. (d) Electric field distributions for the TE and TM polarizations at 1.3 µm wavelength.
Fig. 3
Fig. 3 The calculated transmission efficiencies at1300 nm with different L and w2, (a) TE polarization input-through port output and (b) TM polarization input-cross port output.
Fig. 4
Fig. 4 The calculated transmission efficiencies over the wavelength range from 1200 nm to 1450 nm for different offset values in the straight waveguide section. (a) TE polarization input-through port output and (b) TM polarization input-cross port output. Positive sign is for upward direction, and negative sign for downward direction.
Fig. 5
Fig. 5 Simulated transmission values of the TE and TM polarizations for the (a) final PBS design, and (b) final PBS design with an additional bent waveguide in the end of the through part. The bandwidth with ER>15 was improved more than 70 nm for the TM polarization.
Fig. 6
Fig. 6 Fabrication tolerance analysis of the proposed PBS design for (a) 1% increase in waveguide thickness, (b) 1% decrease in waveguide thickness, (c) 2% increase in waveguide width, and (d) 2% decrease in waveguide width.

Metrics